Bacillus
Una bacteria versátil, multifuncional y ampliamente aplicada
DOI:
https://doi.org/10.29105/bys7.13-108Palabras clave:
Biotecnología, Bacillus, Aplicaciones Industriales, Compuestos biotecnológicosResumen
Las bacterias son microorganismos procariotas que han estado presentes desde el inicio de la vida en la Tierra; y el género Bacillus, descubierto desde los inicios de la Microbiología, se considera un género fascinante por su amplia distribución en el planeta, fácil cultivo a nivel laboratorio, así como por su relevancia para la biosíntesis de metabolitos de importancia en la vida actual, tales como la producción de bioplásticos, péptidos antimicrobianos, enzimas, bioinsecticidas, etc. Por lo tanto, el objetivo del presente escrito es describir la relevancia del género Bacillus, en diversos ámbitos científicos y tecnológicos.
Descargas
Citas
Abedi, D., Feizizadeh, S., Akbari, V., & Jafarian-Dehkordi, A. (2013). In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli. Research in pharmaceutical sciences, 8(4), 260–268.
Abriouel H, Franz CM, Ben Omar N, Gálvez A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011 Jan;35(1):201-32. https://doi.org/10.1111/j.1574-6976.2010.00244.x DOI: https://doi.org/10.1111/j.1574-6976.2010.00244.x
Ariza, Yesid y Sánchez, Ligia. (2012). Determinación de metabolitos secundarios a partir de Bacillus subtilis efecto biocontrolador sobre Fusarium sp.. Nova , 10 (18), 149-155. Recuperado el 14 de septiembre de 2023, de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-24702012000200002&lng=en&tlng=es. DOI: https://doi.org/10.22490/24629448.1003
Balakrishna Pillai, A., Jaya Kumar, A., Thulasi, K., & Kumarapillai, H. (2017). Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 48(3), 451–460. https://doi.org/10.1016/j.bjm.2017.01.005 DOI: https://doi.org/10.1016/j.bjm.2017.01.005
CALS, College of Agriculture and Life Sciences. 2016. Bacterial Endospores. Department of Microbiology. Cornell University. Ithaca, Nueva York 14850, EE. UU. https://micro.cornell.edu/research/epulopiscium/bacterial-endospores
Calvo P y Zúñiga D. 2010. Caracterización fisiológica de cepas de Bacillus spp. aisladas de la rizósfera de papa (Solanum tuberosum). Ecología Aplicada. 9:31-39. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S172622162010000100004&lng=es&tlng=es. DOI: https://doi.org/10.21704/rea.v9i1-2.393
Camilleri, E., Korza, G., Green, J., Yuan, J., Li, Y. Q., Caimano, M. J., & Setlow, P. (2019). Properties of Aged Spores of Bacillus subtilis. Journal of bacteriology, 201(14), e00231-19. https://doi.org/10.1128/JB.00231-19 DOI: https://doi.org/10.1128/JB.00231-19
Cohn F. 1872. Untersuchungen Über Bakterien. Beitrage zur Biologie Pflanz. 1:127-1224
Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. (2005). Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl Environ Microbiol. 71 (9): 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005 DOI: https://doi.org/10.1128/AEM.71.9.4951-4959.2005
Corrales LC, Arévalo ZY. Moreno VE. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. NOVA. 2014; 12(21):67-79 http://www.scielo.org.co/pdf/nova/v12n21/v12n21a06.pdf DOI: https://doi.org/10.22490/24629448.997
Cui W., Han L., Suo F., Liu Z., Zhou L., Zhou Z (2018). Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. W. J. Microbiol. Biotechnol. 34, 145. https://doi.org/10.1007/s11274-018-2531-7 DOI: https://doi.org/10.1007/s11274-018-2531-7
Cutting S. M. (2011). Bacillus probiotics. Food microbiology, 28(2), 214–220. https://doi.org/10.1016/j.fm.2010.03.007 DOI: https://doi.org/10.1016/j.fm.2010.03.007
Elmaghraby, Francesco Carimi, A. Sharaf, E.M. Marei and A.M.M. Hammad, 2015. Isolation and Identification of Bacillus megaterium Bacteriophages via AFLP Technique. Current Research in Bacteriology, 8: 77-89. DOI: https://doi.org/10.3923/crb.2015.77.89
Fijan S. (2014). Microorganisms with claimed probiotic properties: an overview of recent literature. International journal of environmental research and public health, 11(5), 4745–4767. https://doi.org/10.3390/ijerph110504745 DOI: https://doi.org/10.3390/ijerph110504745
Folmsbee, M. J., McInerney, M. J., & Nagle, D. P. (2004). Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Applied and environmental microbiology, 70(9), 5252–5257. https://doi.org/10.1128/AEM.70.9.5252-5257.2004 DOI: https://doi.org/10.1128/AEM.70.9.5252-5257.2004
Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., & Liu, L. (2018). Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic engineering, 50, 109–121. https://doi.org/10.1016/j.ymben.2018.05.006 DOI: https://doi.org/10.1016/j.ymben.2018.05.006
Guo, H., Ban, YH., Cha, Y. (2019). Comparative anti-thrombotic activity and haemorrhagic adverse effect of nattokinase and tissue-type plasminogen activator. Food Sci Biotechnol 28, 1535–1542. https://doi.org/10.1007/s10068-019-00580-1 DOI: https://doi.org/10.1007/s10068-019-00580-1
Hu, Y., Miller, M., Zhang, B., Nguyen, T. T., Nielsen, M. K., & Aroian, R. V. (2018). In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites. PLoS neglected tropical diseases, 12(5), e0006506. https://doi.org/10.1371/journal.pntd.0006506 DOI: https://doi.org/10.1371/journal.pntd.0006506
Jezewska-Frackowiak, J., Seroczynska, K., Banaszczyk, J., Jedrzejczak, G., Zylicz-Stachula, A. and Skowron, P.M. (2018) The Promises and Risks of Probiotic Bacillus Species. Acta Biochimica Polonica, 65, 509-519.
https://doi.org/10.18388/abp.2018_2652 DOI: https://doi.org/10.18388/abp.2018_2652
Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S. C., Bron, S., Brouillet, S., Bruschi, C. V., Caldwell, B., Capuano, V., … Danchin, A. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390(6657), 249–256. https://doi.org/10.1038/36786 DOI: https://doi.org/10.1038/36786
Layton C, Maldonado E, Monroy L, Corrales LC y Sánchez LC. (2011). Bacillus spp.; perspectiva de su efecto biocontrolador mediante antibiosis en cultivos afectados por fitopatógenos. Revista NOVA Publicación Científica en Ciencias Biomédicas. 9:177-187. DOI: https://doi.org/10.22490/24629448.501 DOI: https://doi.org/10.22490/24629448.501
Lim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., & Kim, J. C. (2017). Diffusible and volatile antifungal compounds produced by an antagonistic
Bacillus velezensis G341 against various phytopathogenic fungi. The plant pathology journal, 33(5), 488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073 DOI: https://doi.org/10.5423/PPJ.OA.04.2017.0073
Lopes, R., Tsui, S., Gonçalves, P. J. R. O., & de Queiroz, M. V. (2018). A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World journal of microbiology & biotechnology, 34(7), 94. https://doi.org/10.1007/s11274-018-2479-7 DOI: https://doi.org/10.1007/s11274-018-2479-7
Martínez-Herrera, R. E., Alemán-Huerta, M. E., Almaguer-Cantú, V., Rosas-Flores, W., Martínez-Gómez, V. J., Quintero-Zapata, I., Rivera, G., & Rutiaga-Quiñones, O. M. (2020). Efficient recovery of thermostable polyhydroxybutyrate (PHB) by a rapid and solvent-free extraction protocol assisted by ultrasound. International journal of biological macromolecules, 164, 771–782. https://doi.org/10.1016/j.ijbiomac.2020.07.101 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.101
Martínez Herrera, Raúl Enrique (2021). Estudio y optimización del rendimiento de producción de biopolímeros bacterianos de tipo Poli(3-hidroxibutirato). Tesis de Doctorado, Universidad Autónoma de Nuevo León. http://eprints.uanl.mx/21035/
Martínez-Herrera, R. E. (2018). Aislamiento y estudio de una cepa bacteriana productora de polímeros biodegradables del tipo polihidroxialcanoatos (PHAs). Revista de Ciencias Farmaceúticas y Biomedicina (ISSN: 2448-8380), 23-23.
Maughan H and van der Auwera G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution. 11:789-797. https://doi.org/10.1016/j.meegid.2011.02.001 DOI: https://doi.org/10.1016/j.meegid.2011.02.001
Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms, 8(7), 1037. https://doi.org/10.3390/microorganisms8071037 DOI: https://doi.org/10.3390/microorganisms8071037
Mohapatra, S., Maity, S., Dash, H. R., Das, S., Pattnaik, S., Rath, C. C., & Samantaray, D. (2017). Bacillus and biopolymer: Prospects and challenges. Biochemistry and biophysics reports, 12, 206–213. https://doi.org/10.1016/j.bbrep.2017.10.001 DOI: https://doi.org/10.1016/j.bbrep.2017.10.001
Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N (2008). Productividad de proteína recombinante mejorada por Reducción del genoma en Bacillus subtilis . Res. de ADN 2008; 15 :73–81 DOI: https://doi.org/10.1093/dnares/dsn002
Nagórska, K., Bikowski, M., & Obuchowski, M. (2007). Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta biochimica Polonica, 54(3), 495–508. DOI: https://doi.org/10.18388/abp.2007_3224
Olmos, J., Acosta, M., Mendoza, G., & Pitones, V. (2020). Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of microbiology, 202(3), 427–435. https://doi.org/10.1007/s00203-019-01757-2 DOI: https://doi.org/10.1007/s00203-019-01757-2
Olmos J, Paniagua-Michel J. (2014). Bacillus subtilis A potential probiotic bacterium to formulated functional feeds for aquaculture. J Microb Biochem Technol. 2014;6:361- 365. https://doi.org/10.4172/1948-5948.1000169 DOI: https://doi.org/10.4172/1948-5948.1000169
Ongena M, Jacques P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115-125. https://doi.org/10.1016/j.tim.2007.12.009 DOI: https://doi.org/10.1016/j.tim.2007.12.009
Qi, G., Zhu, F., Du, P., Yang, X., Qiu, D., Yu, Z., Chen, J., & Zhao, X. (2010). Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides, 31(11), 1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003 DOI: https://doi.org/10.1016/j.peptides.2010.08.003
Pérez-García A, Romero D and de Vicente A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology. 22:187-193. https://doi.org/10.1016/j.copbio.2010.12.003 DOI: https://doi.org/10.1016/j.copbio.2010.12.003
Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667 DOI: https://doi.org/10.3389/fphys.2017.00667
Rodríguez, L. L., Cruz-Martín, M., Acosta-Suárez, M., Pichardo, T., BermúdezCaraballoso, I., & Alvarado-Capó, Y. (2017). Antagonismo in vitro de cepas de Bacillus spp. frente a Fusarium oxysporum f. sp. cubense. Biotecnología Vegetal, 17(4).
Rostami, A., Hinc, K., Goshadrou, F., Shali, A., Bayat, M., Hassanzadeh, M., Amanlou, M., Eslahi, N., & Ahmadian, G. (2017). Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pesticide biochemistry and physiology, 140, 17–23. https://doi.org/10.1016/j.pestbp.2017.05.008 DOI: https://doi.org/10.1016/j.pestbp.2017.05.008
Ruiz-Sánchez, E., Mejía-Bautista, M., Cristóbal-Alejo, J., Valencia-Botín, A., & Reyes-Ramírez, A. (2014). Actividad antagónica de filtrados de Bacillus subtilis contra Colletotrichum gloeosporioides (Penz.). Rev. Mex. Cienc. Agríc. 5 (7): 1325-1332. https://www.redalyc.org/pdf/2631/263131533015.pdf DOI: https://doi.org/10.29312/remexca.v5i7.877
Santos, E. N., Menezes, L. P., Dolabella, S. S., Santini, A., Severino, P., Capasso, R., Zielinska, A., Souto, E. B., & Jain, S. (2022). Bacillus thuringiensis: From biopesticides to anticancer agents. Biochimie, 192, 83–90. https://doi.org/10.1016/j.biochi.2021.10.003 DOI: https://doi.org/10.1016/j.biochi.2021.10.003
Shafi J, Tian H, Ji M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip. 2017;31(3):446-459. https://doi.org10.1080/13102818.2017.1286950 DOI: https://doi.org/10.1080/13102818.2017.1286950
Sharma P. & Kumar B. (2015). Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS 10, International Journal of Biological Macromolecules, Volume 81, 2015, Pages 241-248. https://doi.org/10.1016/j.ijbiomac.2015.08.008 DOI: https://doi.org/10.1016/j.ijbiomac.2015.08.008
Straight, P. D., Willey, J. M., & Kolter, R. (2006). Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures. Journal of bacteriology, 188(13), 4918–4925. https://doi.org/10.1128/JB.00162-06 DOI: https://doi.org/10.1128/JB.00162-06
Sudha MR, Bhonagiri S., Kumar MA (2013) Efficacy of Bacillus clausii strain UBBC-07 in the treatment of patients suffering from acute diarrhoea. Beneficial microbes. 2013; 4 :211–216. https://doi.org/10.3920/BM2012.0034 DOI: https://doi.org/10.3920/BM2012.0034
Tejera-Hernández B, Rojas-Badía MM y Heydrich-Pérez M. (2011). Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control de hongos fitopatógenos. Revista CENIC Ciencias Biológicas. 42:131-138. https://www.redalyc.org/pdf/1812/181222321004.pdf
Valappil, S. P., Misra, S. K., Boccaccini, A. R., Keshavarz, T., Bucke, C., & Roy, I. (2007). Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Journal of biotechnology, 132(3), 251–258. https://doi.org/10.1016/j.jbiotec.2007.03.013 DOI: https://doi.org/10.1016/j.jbiotec.2007.03.013
Vickers P. (2012). Antibiotic compounds from Bacillus: Why are they so Amazing? (2012). Am J Biochem Bioechnol. 2012;8(1):38-43. Fickers P. (2012). Antibiotic compounds from Bacillus: Why are they so Amazing? (2012). Am J Biochem Bioechnol. 2012;8(1):38-43. https://doi.org/10.3844/ajbbsp.2012.38.43 DOI: https://doi.org/10.3844/ajbbsp.2012.38.43
Villarreal-Delgado, María Fernanda, Villa-Rodríguez, Eber Daniel, Cira-Chávez, Luis Alberto, Estrada-Alvarado, María Isabel, Parra-Cota, Fannie Isela, & Santos-Villalobos, Sergio de los. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología , 36 (1), 95-130. https://doi.org/10.18781/r.mex.fit.1706-5 DOI: https://doi.org/10.18781/R.MEX.FIT.1706-5
Vu, D. H., Wainaina, S., Taherzadeh, M. J., Åkesson, D., & Ferreira, J. A. (2021). Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered, 12(1), 2480–2498. https://doi.org/10.1080/21655979.2021.1935524 DOI: https://doi.org/10.1080/21655979.2021.1935524
Wang, F., Song, T., Jiang, H., Pei, C., Huang, Q., & Xi, H. (2019). Bacillus subtilis Spore Surface Display of Haloalkane Dehalogenase DhaA. Current microbiology, 76(10), 1161–1167. https://doi.org/10.1007/s00284-019-01723-7 DOI: https://doi.org/10.1007/s00284-019-01723-7
Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, Jude F, Seror SJ, Beekman AC, Darmon E, Eschevins C, de Jong A, Bron S, Kuipers OP, Albertini AM, Antelmann H, Hecker M, Zamboni N, Sauer U, Bruand C, Ehrlich DS, Alonso JC, Salas M, Quax WJ. (2003). Genome Engineering Reveals Large Dispensable Regions in Bacillus subtilis, Molecular Biology and Evolution, Volume 20, Issue 12, December 2003, Pages 2076–2090 https://doi.org/10.1093/molbev/msg219 DOI: https://doi.org/10.1093/molbev/msg219
Wu, H., Wang, H., Xu, F., Chen, J., Duan, L., & Zhang, F. (2019). Acute toxicity and genotoxicity evaluations of Nattokinase, a promising agent for cardiovascular diseases prevention. Regulatory toxicology and pharmacology : RTP, 103, 205–209. https://doi.org/10.1016/j.yrtph.2019.02.006 DOI: https://doi.org/10.1016/j.yrtph.2019.02.006
Yin L, Meng Z, Zhang Y, Hu K, Chen W, Han K, Wu BY, You R, Li CH, Jin Y, Guan YQ. 2018. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer. J Control Release 271:31–44. doi: 10.1016/j.jconrel.2017.12.013. DOI: https://doi.org/10.1016/j.jconrel.2017.12.013
Yuan, L., Liangqi, C., Xiyu, T., & Jinyao, L. (2022). Biotechnology, Bioengineering and Applications of Bacillus Nattokinase. Biomolecules, 12(7), 980. https://doi.org/10.3390/biom12070980 DOI: https://doi.org/10.3390/biom12070980
Zweers, J.C., Barák, I., Becher, D. et al. (2008). Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 7, 10 (2008). https://doi.org/10.1186/1475-2859-7-10 DOI: https://doi.org/10.1186/1475-2859-7-10
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2024 Gustavo de Jesús San Miguel González, María Elizabeth Alemán Huerta, Glenda Berenice Ramírez Sánchez, Diego Patricio Navarro Díaz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.