Bacillus

Una bacteria versátil, multifuncional y ampliamente aplicada

Autores/as

  • Gustavo de Jesús San Miguel González Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-1570-2959
  • María Elizabeth Alemán Huerta Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-1745-6018
  • Glenda Berenice Ramírez Sánchez Universidad Autónoma de Nuevo León
  • Diego Patricio Navarro Díaz Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/bys7.13-108

Palabras clave:

Biotecnología, Bacillus, Aplicaciones Industriales, Compuestos biotecnológicos

Resumen

Las bacterias son microorganismos procariotas que han estado presentes desde el inicio de la vida en la Tierra; y el género Bacillus, descubierto desde los inicios de la Microbiología, se considera un género fascinante por su amplia distribución en el planeta, fácil cultivo a nivel laboratorio, así como por su relevancia para la biosíntesis de metabolitos de importancia en la vida actual, tales como la producción de bioplásticos, péptidos antimicrobianos, enzimas, bioinsecticidas, etc. Por lo tanto, el objetivo del presente escrito es describir la relevancia del género Bacillus, en diversos ámbitos científicos y tecnológicos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Gustavo de Jesús San Miguel González, Universidad Autónoma de Nuevo León

Químico Farmacobiólogo por la Universidad Autónoma de Coahuila. Estudiante del Doctorado en Ciencias orientación en Biotecnología en la Universidad Autónoma de Nuevo León. Forma parte del Laboratorio 3 del Instituto de Biotecnología FCB-UANL. Su línea de Investigación es el estudio de biopolímeros microbianos tipo Polihidroxialcanoatos. Autor de un capítulo de libro, ponente de cinco trabajos de investigación en distintos congresos nacionales e internacionales, co-director de dos tesis de licenciatura.

María Elizabeth Alemán Huerta, Universidad Autónoma de Nuevo León

Profesora investigadora de la FCB-UANL, responsable del L3 del IB-FCB-UANL. Cuenta con perfil PRODEP, es miembro del cuerpo Académico Investigación Biotecnológica, así como a la Academia de Microbiología Básica en la FCB-UANL. Dirige los trabajos de investigación relacionados a la bioprospección y aislamiento de cepas bacterianas productoras de bioplásticos (PHAs), así como el aprovechamiento de residuos agroindustriales y estudio de la flora nativa como fuente de carbono en fermentaciones de Bacillus. Miembro del SNI, nivel l.

Glenda Berenice Ramírez Sánchez, Universidad Autónoma de Nuevo León

Estudiante de la carrera Químico Bacteriólogo Parasitólogo de la Facultad de Ciencias Biológicas de la UANL desde 2020. Integrante del Laboratorio 3 del Instituto de Biotecnologia FCB-UANL. Becaria en la materia de Microbiología General y voluntaria en el Instituto de Biotecnología a partir del 2022, en el proyecto Estudio de cepas halófilas productoras de PHA; en el 2019 formó parte de laboratorio de Química Analítica FCB en el proyecto de Efectos antimicrobianos de extractos de plantas y realizó verano científico en el laboratorio de Materiales de la Facultad de Ingeniería Mecánica y Eléctrica de la UANL en el proyecto Cementos activados alcalinamente y en la Facultad de Agronomía de la UANL en el proyecto Residuo de la preparación de café soluble: Un subproducto con potencial para la extracción de compuestos bioactivos.

Diego Patricio Navarro Díaz, Universidad Autónoma de Nuevo León

Estudiante de la carrera Quimico Bacteriólogo Parasitólogo de la Facultad de Ciencias Biológicas de la UANL desde Enero 2020. Forma parte del Laboratorio 3 del Instituto de Biotecnologia FCB-UANL. Becario en la materia de Microbiología y voluntario en el Instituto de Biotecnología. Realizó verano científico con el proyecto Aislamiento de bacterias para la biosíntesis de bioplásticos tipo PHA, así como participó en el proyecto Estudio de cepas halófilas productoras de PHA.

Citas

Abedi, D., Feizizadeh, S., Akbari, V., & Jafarian-Dehkordi, A. (2013). In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli. Research in pharmaceutical sciences, 8(4), 260–268.

Abriouel H, Franz CM, Ben Omar N, Gálvez A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011 Jan;35(1):201-32. https://doi.org/10.1111/j.1574-6976.2010.00244.x DOI: https://doi.org/10.1111/j.1574-6976.2010.00244.x

Ariza, Yesid y Sánchez, Ligia. (2012). Determinación de metabolitos secundarios a partir de Bacillus subtilis efecto biocontrolador sobre Fusarium sp.. Nova , 10 (18), 149-155. Recuperado el 14 de septiembre de 2023, de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-24702012000200002&lng=en&tlng=es. DOI: https://doi.org/10.22490/24629448.1003

Balakrishna Pillai, A., Jaya Kumar, A., Thulasi, K., & Kumarapillai, H. (2017). Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 48(3), 451–460. https://doi.org/10.1016/j.bjm.2017.01.005 DOI: https://doi.org/10.1016/j.bjm.2017.01.005

CALS, College of Agriculture and Life Sciences. 2016. Bacterial Endospores. Department of Microbiology. Cornell University. Ithaca, Nueva York 14850, EE. UU. https://micro.cornell.edu/research/epulopiscium/bacterial-endospores

Calvo P y Zúñiga D. 2010. Caracterización fisiológica de cepas de Bacillus spp. aisladas de la rizósfera de papa (Solanum tuberosum). Ecología Aplicada. 9:31-39. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S172622162010000100004&lng=es&tlng=es. DOI: https://doi.org/10.21704/rea.v9i1-2.393

Camilleri, E., Korza, G., Green, J., Yuan, J., Li, Y. Q., Caimano, M. J., & Setlow, P. (2019). Properties of Aged Spores of Bacillus subtilis. Journal of bacteriology, 201(14), e00231-19. https://doi.org/10.1128/JB.00231-19 DOI: https://doi.org/10.1128/JB.00231-19

Cohn F. 1872. Untersuchungen Über Bakterien. Beitrage zur Biologie Pflanz. 1:127-1224

Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. (2005). Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl Environ Microbiol. 71 (9): 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005 DOI: https://doi.org/10.1128/AEM.71.9.4951-4959.2005

Corrales LC, Arévalo ZY. Moreno VE. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. NOVA. 2014; 12(21):67-79 http://www.scielo.org.co/pdf/nova/v12n21/v12n21a06.pdf DOI: https://doi.org/10.22490/24629448.997

Cui W., Han L., Suo F., Liu Z., Zhou L., Zhou Z (2018). Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. W. J. Microbiol. Biotechnol. 34, 145. https://doi.org/10.1007/s11274-018-2531-7 DOI: https://doi.org/10.1007/s11274-018-2531-7

Cutting S. M. (2011). Bacillus probiotics. Food microbiology, 28(2), 214–220. https://doi.org/10.1016/j.fm.2010.03.007 DOI: https://doi.org/10.1016/j.fm.2010.03.007

Elmaghraby, Francesco Carimi, A. Sharaf, E.M. Marei and A.M.M. Hammad, 2015. Isolation and Identification of Bacillus megaterium Bacteriophages via AFLP Technique. Current Research in Bacteriology, 8: 77-89. DOI: https://doi.org/10.3923/crb.2015.77.89

Fijan S. (2014). Microorganisms with claimed probiotic properties: an overview of recent literature. International journal of environmental research and public health, 11(5), 4745–4767. https://doi.org/10.3390/ijerph110504745 DOI: https://doi.org/10.3390/ijerph110504745

Folmsbee, M. J., McInerney, M. J., & Nagle, D. P. (2004). Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Applied and environmental microbiology, 70(9), 5252–5257. https://doi.org/10.1128/AEM.70.9.5252-5257.2004 DOI: https://doi.org/10.1128/AEM.70.9.5252-5257.2004

Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., & Liu, L. (2018). Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic engineering, 50, 109–121. https://doi.org/10.1016/j.ymben.2018.05.006 DOI: https://doi.org/10.1016/j.ymben.2018.05.006

Guo, H., Ban, YH., Cha, Y. (2019). Comparative anti-thrombotic activity and haemorrhagic adverse effect of nattokinase and tissue-type plasminogen activator. Food Sci Biotechnol 28, 1535–1542. https://doi.org/10.1007/s10068-019-00580-1 DOI: https://doi.org/10.1007/s10068-019-00580-1

Hu, Y., Miller, M., Zhang, B., Nguyen, T. T., Nielsen, M. K., & Aroian, R. V. (2018). In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites. PLoS neglected tropical diseases, 12(5), e0006506. https://doi.org/10.1371/journal.pntd.0006506 DOI: https://doi.org/10.1371/journal.pntd.0006506

Jezewska-Frackowiak, J., Seroczynska, K., Banaszczyk, J., Jedrzejczak, G., Zylicz-Stachula, A. and Skowron, P.M. (2018) The Promises and Risks of Probiotic Bacillus Species. Acta Biochimica Polonica, 65, 509-519.

https://doi.org/10.18388/abp.2018_2652 DOI: https://doi.org/10.18388/abp.2018_2652

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S. C., Bron, S., Brouillet, S., Bruschi, C. V., Caldwell, B., Capuano, V., … Danchin, A. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390(6657), 249–256. https://doi.org/10.1038/36786 DOI: https://doi.org/10.1038/36786

Layton C, Maldonado E, Monroy L, Corrales LC y Sánchez LC. (2011). Bacillus spp.; perspectiva de su efecto biocontrolador mediante antibiosis en cultivos afectados por fitopatógenos. Revista NOVA Publicación Científica en Ciencias Biomédicas. 9:177-187. DOI: https://doi.org/10.22490/24629448.501 DOI: https://doi.org/10.22490/24629448.501

Lim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., & Kim, J. C. (2017). Diffusible and volatile antifungal compounds produced by an antagonistic

Bacillus velezensis G341 against various phytopathogenic fungi. The plant pathology journal, 33(5), 488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073 DOI: https://doi.org/10.5423/PPJ.OA.04.2017.0073

Lopes, R., Tsui, S., Gonçalves, P. J. R. O., & de Queiroz, M. V. (2018). A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World journal of microbiology & biotechnology, 34(7), 94. https://doi.org/10.1007/s11274-018-2479-7 DOI: https://doi.org/10.1007/s11274-018-2479-7

Martínez-Herrera, R. E., Alemán-Huerta, M. E., Almaguer-Cantú, V., Rosas-Flores, W., Martínez-Gómez, V. J., Quintero-Zapata, I., Rivera, G., & Rutiaga-Quiñones, O. M. (2020). Efficient recovery of thermostable polyhydroxybutyrate (PHB) by a rapid and solvent-free extraction protocol assisted by ultrasound. International journal of biological macromolecules, 164, 771–782. https://doi.org/10.1016/j.ijbiomac.2020.07.101 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.101

Martínez Herrera, Raúl Enrique (2021). Estudio y optimización del rendimiento de producción de biopolímeros bacterianos de tipo Poli(3-hidroxibutirato). Tesis de Doctorado, Universidad Autónoma de Nuevo León. http://eprints.uanl.mx/21035/

Martínez-Herrera, R. E. (2018). Aislamiento y estudio de una cepa bacteriana productora de polímeros biodegradables del tipo polihidroxialcanoatos (PHAs). Revista de Ciencias Farmaceúticas y Biomedicina (ISSN: 2448-8380), 23-23.

Maughan H and van der Auwera G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution. 11:789-797. https://doi.org/10.1016/j.meegid.2011.02.001 DOI: https://doi.org/10.1016/j.meegid.2011.02.001

Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms, 8(7), 1037. https://doi.org/10.3390/microorganisms8071037 DOI: https://doi.org/10.3390/microorganisms8071037

Mohapatra, S., Maity, S., Dash, H. R., Das, S., Pattnaik, S., Rath, C. C., & Samantaray, D. (2017). Bacillus and biopolymer: Prospects and challenges. Biochemistry and biophysics reports, 12, 206–213. https://doi.org/10.1016/j.bbrep.2017.10.001 DOI: https://doi.org/10.1016/j.bbrep.2017.10.001

Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N (2008). Productividad de proteína recombinante mejorada por Reducción del genoma en Bacillus subtilis . Res. de ADN 2008; 15 :73–81 DOI: https://doi.org/10.1093/dnares/dsn002

Nagórska, K., Bikowski, M., & Obuchowski, M. (2007). Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta biochimica Polonica, 54(3), 495–508. DOI: https://doi.org/10.18388/abp.2007_3224

Olmos, J., Acosta, M., Mendoza, G., & Pitones, V. (2020). Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of microbiology, 202(3), 427–435. https://doi.org/10.1007/s00203-019-01757-2 DOI: https://doi.org/10.1007/s00203-019-01757-2

Olmos J, Paniagua-Michel J. (2014). Bacillus subtilis A potential probiotic bacterium to formulated functional feeds for aquaculture. J Microb Biochem Technol. 2014;6:361- 365. https://doi.org/10.4172/1948-5948.1000169 DOI: https://doi.org/10.4172/1948-5948.1000169

Ongena M, Jacques P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115-125. https://doi.org/10.1016/j.tim.2007.12.009 DOI: https://doi.org/10.1016/j.tim.2007.12.009

Qi, G., Zhu, F., Du, P., Yang, X., Qiu, D., Yu, Z., Chen, J., & Zhao, X. (2010). Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides, 31(11), 1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003 DOI: https://doi.org/10.1016/j.peptides.2010.08.003

Pérez-García A, Romero D and de Vicente A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology. 22:187-193. https://doi.org/10.1016/j.copbio.2010.12.003 DOI: https://doi.org/10.1016/j.copbio.2010.12.003

Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667 DOI: https://doi.org/10.3389/fphys.2017.00667

Rodríguez, L. L., Cruz-Martín, M., Acosta-Suárez, M., Pichardo, T., BermúdezCaraballoso, I., & Alvarado-Capó, Y. (2017). Antagonismo in vitro de cepas de Bacillus spp. frente a Fusarium oxysporum f. sp. cubense. Biotecnología Vegetal, 17(4).

Rostami, A., Hinc, K., Goshadrou, F., Shali, A., Bayat, M., Hassanzadeh, M., Amanlou, M., Eslahi, N., & Ahmadian, G. (2017). Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pesticide biochemistry and physiology, 140, 17–23. https://doi.org/10.1016/j.pestbp.2017.05.008 DOI: https://doi.org/10.1016/j.pestbp.2017.05.008

Ruiz-Sánchez, E., Mejía-Bautista, M., Cristóbal-Alejo, J., Valencia-Botín, A., & Reyes-Ramírez, A. (2014). Actividad antagónica de filtrados de Bacillus subtilis contra Colletotrichum gloeosporioides (Penz.). Rev. Mex. Cienc. Agríc. 5 (7): 1325-1332. https://www.redalyc.org/pdf/2631/263131533015.pdf DOI: https://doi.org/10.29312/remexca.v5i7.877

Santos, E. N., Menezes, L. P., Dolabella, S. S., Santini, A., Severino, P., Capasso, R., Zielinska, A., Souto, E. B., & Jain, S. (2022). Bacillus thuringiensis: From biopesticides to anticancer agents. Biochimie, 192, 83–90. https://doi.org/10.1016/j.biochi.2021.10.003 DOI: https://doi.org/10.1016/j.biochi.2021.10.003

Shafi J, Tian H, Ji M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip. 2017;31(3):446-459. https://doi.org10.1080/13102818.2017.1286950 DOI: https://doi.org/10.1080/13102818.2017.1286950

Sharma P. & Kumar B. (2015). Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS 10, International Journal of Biological Macromolecules, Volume 81, 2015, Pages 241-248. https://doi.org/10.1016/j.ijbiomac.2015.08.008 DOI: https://doi.org/10.1016/j.ijbiomac.2015.08.008

Straight, P. D., Willey, J. M., & Kolter, R. (2006). Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures. Journal of bacteriology, 188(13), 4918–4925. https://doi.org/10.1128/JB.00162-06 DOI: https://doi.org/10.1128/JB.00162-06

Sudha MR, Bhonagiri S., Kumar MA (2013) Efficacy of Bacillus clausii strain UBBC-07 in the treatment of patients suffering from acute diarrhoea. Beneficial microbes. 2013; 4 :211–216. https://doi.org/10.3920/BM2012.0034 DOI: https://doi.org/10.3920/BM2012.0034

Tejera-Hernández B, Rojas-Badía MM y Heydrich-Pérez M. (2011). Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control de hongos fitopatógenos. Revista CENIC Ciencias Biológicas. 42:131-138. https://www.redalyc.org/pdf/1812/181222321004.pdf

Valappil, S. P., Misra, S. K., Boccaccini, A. R., Keshavarz, T., Bucke, C., & Roy, I. (2007). Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Journal of biotechnology, 132(3), 251–258. https://doi.org/10.1016/j.jbiotec.2007.03.013 DOI: https://doi.org/10.1016/j.jbiotec.2007.03.013

Vickers P. (2012). Antibiotic compounds from Bacillus: Why are they so Amazing? (2012). Am J Biochem Bioechnol. 2012;8(1):38-43. Fickers P. (2012). Antibiotic compounds from Bacillus: Why are they so Amazing? (2012). Am J Biochem Bioechnol. 2012;8(1):38-43. https://doi.org/10.3844/ajbbsp.2012.38.43 DOI: https://doi.org/10.3844/ajbbsp.2012.38.43

Villarreal-Delgado, María Fernanda, Villa-Rodríguez, Eber Daniel, Cira-Chávez, Luis Alberto, Estrada-Alvarado, María Isabel, Parra-Cota, Fannie Isela, & Santos-Villalobos, Sergio de los. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología , 36 (1), 95-130. https://doi.org/10.18781/r.mex.fit.1706-5 DOI: https://doi.org/10.18781/R.MEX.FIT.1706-5

Vu, D. H., Wainaina, S., Taherzadeh, M. J., Åkesson, D., & Ferreira, J. A. (2021). Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered, 12(1), 2480–2498. https://doi.org/10.1080/21655979.2021.1935524 DOI: https://doi.org/10.1080/21655979.2021.1935524

Wang, F., Song, T., Jiang, H., Pei, C., Huang, Q., & Xi, H. (2019). Bacillus subtilis Spore Surface Display of Haloalkane Dehalogenase DhaA. Current microbiology, 76(10), 1161–1167. https://doi.org/10.1007/s00284-019-01723-7 DOI: https://doi.org/10.1007/s00284-019-01723-7

Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, Jude F, Seror SJ, Beekman AC, Darmon E, Eschevins C, de Jong A, Bron S, Kuipers OP, Albertini AM, Antelmann H, Hecker M, Zamboni N, Sauer U, Bruand C, Ehrlich DS, Alonso JC, Salas M, Quax WJ. (2003). Genome Engineering Reveals Large Dispensable Regions in Bacillus subtilis, Molecular Biology and Evolution, Volume 20, Issue 12, December 2003, Pages 2076–2090 https://doi.org/10.1093/molbev/msg219 DOI: https://doi.org/10.1093/molbev/msg219

Wu, H., Wang, H., Xu, F., Chen, J., Duan, L., & Zhang, F. (2019). Acute toxicity and genotoxicity evaluations of Nattokinase, a promising agent for cardiovascular diseases prevention. Regulatory toxicology and pharmacology : RTP, 103, 205–209. https://doi.org/10.1016/j.yrtph.2019.02.006 DOI: https://doi.org/10.1016/j.yrtph.2019.02.006

Yin L, Meng Z, Zhang Y, Hu K, Chen W, Han K, Wu BY, You R, Li CH, Jin Y, Guan YQ. 2018. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer. J Control Release 271:31–44. doi: 10.1016/j.jconrel.2017.12.013. DOI: https://doi.org/10.1016/j.jconrel.2017.12.013

Yuan, L., Liangqi, C., Xiyu, T., & Jinyao, L. (2022). Biotechnology, Bioengineering and Applications of Bacillus Nattokinase. Biomolecules, 12(7), 980. https://doi.org/10.3390/biom12070980 DOI: https://doi.org/10.3390/biom12070980

Zweers, J.C., Barák, I., Becher, D. et al. (2008). Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 7, 10 (2008). https://doi.org/10.1186/1475-2859-7-10 DOI: https://doi.org/10.1186/1475-2859-7-10

Descargas

Publicado

2024-01-02

Cómo citar

San Miguel González, G. de J., Alemán Huerta, M. E., Ramírez Sánchez, G. B., & Navarro Díaz, D. P. (2024). Bacillus: Una bacteria versátil, multifuncional y ampliamente aplicada. Biología Y Sociedad, 7(13), 73–81. https://doi.org/10.29105/bys7.13-108

Número

Sección

Artículos

Categorías