La vida en la zona intermareal
adaptaciones en un ecosistema cambiante
DOI:
https://doi.org/10.29105/bys7.13-105Palabras clave:
Intermareal, Ecología, biodiversidadResumen
El ecosistema intermareal es una zona costera que se encuentra entre las mareas alta y baja. Esta zona es extremadamente importante, debido a que es el hogar de una gran cantidad de organismos marinos que dependen de las condiciones específicas de esta área para sobrevivir.
Las características de las zonas intermareales son tan distintas que es difícil comparar un acantilado rocoso con una marisma lodosa o incluso una pradera de pastos estuarinos. ¿Pero qué tienen en común estos ecosistemas a lo largo del mundo? La zona intermareal es la franja de tierra que se encuentra entre la línea de marea alta y la marea baja en la costa, y es un hábitat importante para muchas especies de plantas y animales, estos organismos que viven allí deben ser capaces de adaptarse a cambios extremos en las condiciones ambientales y dado la interacción del ser humano con estas áreas, hoy en día es uno de los hábitats más perturbados y amenazados del planeta.
La importancia de la zona intermareal radica en su papel como zona de transición entre los ecosistemas terrestres y marinos, y en su contribución a la biodiversidad global. En la zona intermareal se pueden encontrar una gran variedad de especies, como algas, crustáceos, moluscos, gusanos, aves costeras y migratorias, entre otras. Estas especies son importantes para la cadena alimentaria y contribuyen a la pesca y la acuicultura local de cada región. Además, la zona intermareal desempeña un papel crucial en la protección de la costa, ya que ayuda a prevenir la erosión costera y reduce la energía de las olas. Las plantas y animales que viven en la zona intermareal también son importantes para la purificación del agua y la absorción de nutrientes. El ecosistema intermareal es un área increíblemente importante que tiene un impacto significativo en el medio ambiente y en la vida de las personas. Es fundamental que se proteja y conserve para garantizar su supervivencia y su papel crítico en el ecosistema global.
Descargas
Citas
Acosta-Ruíz, M. y Alvarez-Borrego, S. (1974). Distribución superficial de algunos parámetros hidrológicos físicos y químicos, en el Estero de Punta Banda, B. C., en otoño e invierno. Ciencias Marinas, 1(1): pp. 16–45. doi: 10.7773/cm.v1i1.249. DOI: https://doi.org/10.7773/cm.v1i1.249
Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical review, 1: pp. 108-140.
Anderson, M. J. (2008). Animal-sediment relationships re-visited: Characterising species' distributions along an environmental gradient using canonical analysis and quantile regression splines. Journal of Experimental Marine Biology and Ecology, 366(1-2), 16-27. DOI: https://doi.org/10.1016/j.jembe.2008.07.006
Araujo-Leyva, O. R., Rodriguez-Villanueva, L. V., y Macias-Zamora J. V. (2020). Biodiversity of polychaetous annelids in Bahía de Todos Santos, Baja California México. Zoosymposia, 19, 51-71. DOI: https://doi.org/10.11646/zoosymposia.19.1.10
Airoldi, L., Cinelli, F., 1997. Effects of sedimentation on subtidal macroalgal assemblages: an experimental study from a Mediterranean rocky shore. Journal of Experimental Marine Biology and Ecology 215, 269e288. DOI: https://doi.org/10.1016/S0022-0981(96)02770-0
Araya, J. y Aliaga, J. (2018). El Niño invaders: the occurrence of the by-the-wind sailor Velella velella (Linnaeus, 1758) in the southeastern Pacific. Spixiana, 14(1): p. 132.
Ayre, D. J., & Grosberg, R. K. (2005). Behind anemone lines: factors affecting division of labour in the social cnidarian Anthopleura elegantissima. Animal Behaviour, 70(1), 97–110. doi:10.1016/j.anbehav.2004.08.022 DOI: https://doi.org/10.1016/j.anbehav.2004.08.022
Bedgood, S. A., Mastroni, S. E. y Bracken, M. E. (2020). Flexibility of nutritional strategies within a mutualism: food availability affects algal symbiont productivity in two congeneric sea anemone species. Proceedings of the Royal Society B, 287(1940): pp. 1-10. doi: 10.1098/rspb.2020.1860. DOI: https://doi.org/10.1098/rspb.2020.1860
Brenchley, G. A., & Carlton, J. T. (1983). Competitive displacement of native mud snails by introduced periwinkles in the New England intertidal zone. The Biological Bulletin, 165(3), 543-558. DOI: https://doi.org/10.2307/1541464
Brusca, R. C., Cudney-Bueno, R., y Moreno-Báez, M. (2006). Gulf of California esteros and estuaries: analysis, state of knowledge and conservation priority recommendations. Final Report to the David and Lucile Packard Foundation by the Arizona-Sonora Desert Museum.
Burnaford, J. L.,y Vasquez, M. (2008). Solar radiation plays a role in habitat selection by the sea star Pisaster ochraceus. Marine Ecology Progress Series, 368: pp. 177-187. doi: 10.3354/meps07598, DOI: https://doi.org/10.3354/meps07598
Cox, P. A., Tomlinson, P. B., & Nieznanski, K. (1992). Hydrophilous pollination and reproductive morphology in the seagrass Phyllospadix scouleri (Zosteraceae). Plant Systematics and Evolution, 180(1-2), 65–75. doi:10.1007/bf00940398 DOI: https://doi.org/10.1007/BF00940398
Crossland, C. J., Kremer, H. H., Lindeboom, H., Crossland, J. I. M., y Le Tissier, M. D. (Eds.). (2005). Coastal fluxes in the Anthropocene: the land-ocean interactions in the coastal zone project of the International Geosphere-Biosphere Programme. Springer Science and Business Media. DOI: https://doi.org/10.1007/3-540-27851-6
Derby, C. (2014). Cephalopod Ink: Production, Chemistry, Functions and Applications. Marine Drugs, 12(5), 2700–2730. doi:10.3390/md12052700 DOI: https://doi.org/10.3390/md12052700
Denny, M. W., & King, F. A. (2016). The extraordinary joint material of an articulated coralline alga. I. Mechanical characterization of a key adaptation. The Journal of Experimental Biology, 219(12), 1833–1842. doi:10.1242/jeb.138859 DOI: https://doi.org/10.1242/jeb.138859
Gohad, N. V., Aldred, N., Hartshorn, C. M., Jong Lee, Y., Cicerone, M. T., Orihuela, B., ... y Mount, A. S. (2014). Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nature communications, 5(1): pp. 1-9. doi: 10.1038/ncomms5414. DOI: https://doi.org/10.1038/ncomms5414
Graham, L. E., Graham, J. M., Wilcox, L. W. y Cook, M. E. (2016). Algae (3ra ed). LJLM Press.
Gray, J. S. y Elliott, M. (2009). Ecology of marine sediments: from science to management. Oxford university press. DOI: https://doi.org/10.1093/oso/9780198569015.003.0005
Hill, R. W., Wyse, G. A. y Anderson, M. (2012). Animal physiology. Sinauer Associates, Inc. Publishers.Jones, L. L. (1941). Osmotic regulation in several crabs of the Pacific coast of North America. Journal of Cellular and Comparative Physiology, 18(1): pp. 79-92. doi: 10.2307/1941214. DOI: https://doi.org/10.1002/jcp.1030180109
Kinne, O. (1966). Physiological aspects of animal life in estuaries with special reference to salinity. Netherlands Journal of Sea Research, 3(2): pp. 222–244. doi:10.1016/0077-7579(66)90013-5. DOI: https://doi.org/10.1016/0077-7579(66)90013-5
Kwak, T. y Zedler, J. (1997) Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110: pp. 262–277. doi: 10.1007/s004420050159 DOI: https://doi.org/10.1007/s004420050159
McCartney, M. A. (2021). Structure, function and parallel evolution of the bivalve byssus, with insights from proteomes and the zebra mussel genome. Philosophical Transactions of the Royal Society B, 376(1825): pp. 1-12. doi: 10.1098/rstb.2020.0155. DOI: https://doi.org/10.1098/rstb.2020.0155
McNeill, M. (2010). Vertical zonation: Studying ecological patterns in the rocky intertidal zone. Science Activities, 47(1), 8-14. DOI: https://doi.org/10.1080/00368120903280735
Mendoza-Carranza, M. y Rosales-Casian, J. A. (2002). Feeding ecology of juvenile kelp bass (Paralabrax clathratus) and barred sand bass (P. nebulifer) in Punta Banda Estuary, Baja California, Mexico. BULLETIN-SOUTHERN CALIFORNIA ACADEMY OF SCIENCES, 101(3): pp. 103-117.
Miller, G. T. y Spoolman, S. E. (2009). Essentials of Ecology (5ed). Brooks/Cole, Cengage Learning.
Molles, M. C. (2016). Ecology, concepts and applications (7ed). McGrawHill Education.
Nakauchi, M. (1982). Asexual Development of Ascidians: Its Biological Significance, Diversity, and Morphogenesis. American Zoologist, 22(4), 753–763. doi:10.1093/icb/22.4.753 DOI: https://doi.org/10.1093/icb/22.4.753
Newell, R. C. (1976). Adaptations to intertidal life. En Newell, R. C. (Ed.), Adaptation to Environment: Essays on the Physiology of Marine Animals (pp.1-25). Butterworths. DOI: https://doi.org/10.1016/B978-0-408-70778-7.50004-4
Paine, R. T. (1974). Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia, 15: pp. 93-120. doi: 10.1007/BF00345739. DOI: https://doi.org/10.1007/BF00345739
Pawlik, J. R. (1993). Marine invertebrate chemical defenses. Chemical Reviews, 93(5), 1911–1922. doi:10.1021/cr00021a012 DOI: https://doi.org/10.1021/cr00021a012
Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., ... y Paine, R. T. (1996). Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. BioScience, 46(8): pp. 609-620. doi: 10.2307/1312990. DOI: https://doi.org/10.2307/1312990
Pechenik, J. A. (2015). Biology of the Invertebrates (7ma ed.). McGraw-Hill Education.
Peterson, C. H. (1991) Intertidal Zonation of Marine Invertebrates in Sand and Mud. Sigma Xi, The Scientific Research Society, 7(3): pp. 236-249.
Quesada, A. J., Acuña, F. H. y Cortés, J. (2014). Diet of the sea anemone Anthopleura nigrescens: composition and variation between daytime and nighttime high tides. Zoological Studies, 53(1): pp. 1-7. doi: 10.1186/s40555-014-0026-2. DOI: https://doi.org/10.1186/s40555-014-0026-2
Raffaelli D. y Hawkins, S. (1999). Intertidal Ecology (2 ed.; 1-35 pp.). Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-94-009-1489-6_1
Recher, H. F. (1966). Some aspects of the ecology of migrant shorebirds. Ecology, 47(3): pp. 393-407. DOI: https://doi.org/10.2307/1932979
Ruiz-Campos, G. y Hammann, M. G. (1987). A species list of the rocky intertidal fishes of Todos Santos Bay, Baja California, Mexico. Ciencias Marinas, 13(1): pp. 61-69. doi: 10.7773/cm.v13i1.524. Schubert, H., Telesh, I., Nikinmaa, M. y Skarlato, S. (2017). Physiological adaptations. En Snoeijs-Leijonmalm, P., Schubert, H. y Radziejewska, T. (eds), Biological Oceanography of the Baltic Sea (pp. 255–278). Springer. doi: 10.1007/978-94-007-0668-2_7. DOI: https://doi.org/10.7773/cm.v13i1.524
Smith, A. M. (2002). The structure and function of adhesive gels from invertebrates. Integrative and Comparative Biology, 42(6): pp. 1164-1171. doi: 10.1093/icb/42.6.1164. DOI: https://doi.org/10.1093/icb/42.6.1164
Smith, T. M. y Smith, R. L. (2007). Ecología (6ed). Pearson Educación.
Southward, A. J. (1958). The zonation of plants and animals on rocky sea shores. Biological Reviews, 33(2): pp. 137-177. doi: 10.1111/j.1469-185X.1958.tb01305.x. DOI: https://doi.org/10.1111/j.1469-185X.1958.tb01305.x
Strathmann, R. R. (1981). The role of spines in preventing structural damage to echinoid tests. Paleobiology, 7(03), 400–406. doi:10.1017/s0094837300004693 DOI: https://doi.org/10.1017/S0094837300004693
Suggett, D. J., Hall‐Spencer, J. M., Rodolfo‐Metalpa, R., Boatman, T. G., Payton, R., Tye Pettay, D., ... & Lawson, T. (2012). Sea anemones may thrive in a high CO2 world. Global Change Biology, 18(10), 3015-3025. DOI: https://doi.org/10.1111/j.1365-2486.2012.02767.x
Teo, D. S. Y., Chew, S. F., & Ip, Y. K. (2000). L-Cysteine is a Competitive Inhibitor of Pyruvate Kinase from the Intertidal Sipunculan, Phascolosoma arcuatum. Zoological Science, 17(6), 717–723. doi:10.2108/zsj.17.717 DOI: https://doi.org/10.2108/zsj.17.717
Trench, R. K. (1988). Specificity in dinomastigote-marine invertebrate symbioses: an evaluation of hypotheses of mechanisms involved in producing specificity. In Cell to Cell Signals in Plant, Animal and Microbial Symbiosis (pp. 325-346). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-73154-9_23
Ustin, S. (1984). Contrasting salinity responses of two halophytes. California Agriculture, 38(10): pp. 27-28.
Vázquez Aguilar, C. I. (2019). Biodiversidad de macroinvertebrados del intermareal rocoso de Isla Guadalupe, Baja California, México [Tesis de maestría]. UABC https://repositorioinstitucional.uabc.mx/bitstream/20.500.12930/902/1/ENS090673.pdf.
Verdes, A., Simpson, D. y Holford, M. (2018). Are fireworms venomous? Evidence for the convergent evolution of toxin homologs in three species of fireworms (Annelida, Amphinomidae). Genome biology and evolution, 10(1): pp. 249-268. doi: 10.1093/gbe/evx279. DOI: https://doi.org/10.1093/gbe/evx279
Yoshiyama, R. M., Sassaman, C. y Lea, R. N. (1986). Rocky intertidal fish communities of California: temporal and spatial variation. Environmental Biology of Fishes, 17: pp. 23-40. doi: 10.1007/BF00000398. DOI: https://doi.org/10.1007/BF00000398
Wangensteen, O. S., Turon, X., Palacín, C. y Rossi, S. (2017). Reproductive strategies in marine invertebrates and the structuring of marine animal forests. En Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds), Marine Animal Forests (pp. 571–594). Springer, Cham. doi: 10.1007/978-3-319-21012-4_52. DOI: https://doi.org/10.1007/978-3-319-21012-4_52
Winkler, L. R. y Dawson, E. Y. (1963). Observations and experiments on the food habits of California sea hares of the genus Aplysia. Pac Sci 17(1): pp.102-105. DOI: https://doi.org/10.1016/0041-0101(63)90064-3
Woodin, S. A. (1974). Polychaete abundance patterns in a marine soft‐sediment environment: the importance of biological interactions. Ecological Monographs, 44(2): pp. 171-187. DOI: https://doi.org/10.2307/1942310
Plough, L. V., Moran, A., & Marko, P. (2014). Density drives polyandry and relatedness influences paternal success in the Pacific gooseneck barnacle, Pollicipes elegans. BMC Evolutionary Biology, 14, 1-10. DOI: https://doi.org/10.1186/1471-2148-14-81
Yusa, Y., Yoshikawa, M., Kitaura, J., Kawane, M., Ozaki, Y., Yamato, S., & Høeg, J. T. (2012). Adaptive evolution of sexual systems in pedunculate barnacles. Proceedings of the Royal Society B: Biological Sciences, 279(1730), 959-966. DOI: https://doi.org/10.1098/rspb.2011.1554
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2024 Osmar Araujo-Leyva, Julio Lorda Solórzano, Marco Antonio Moriel Sáenz, Sebastián Ruiz Mejía, Alejandro González-Rojas, Lucia Tonalli Durazo Sandoval
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.