Las radiaciones y el ambiente

Autores/as

  • José Antonio Heredia Rojas Universidad Autónoma de Nuevo León
  • Omar Heredia Rodríguez Universidad Autónoma de Nuevo León
  • Abraham Octavio Rodríguez de la Fuente Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/bys1.1-63

Palabras clave:

Radiecología, Radiaciones ionizantes, Radiaciones no-ionizantes, Radiobiología

Resumen

El advenimiento de la era nuclear, aunado al desarrollo de diversas tecnologías sobre todo en lo referente a telecomunicaciones, ha producido un incremento generalizado de diversos tipos de radiaciones en nuestro ambiente. Además, el ya conocido decremento de la capa de ozono, provoca cambios tan rápidos en el entorno radiológico que no hay a la fecha suficientes estudios que demuestren concluyentemente el potencial riesgo que estas radiaciones representan para los seres vivos. Las Ciencias Biológicas han llegado a tal grado de especialización, que actualmente existe una rama de la Ecología, la así llamada “Radioecología” que se ocupa del estudio del impacto de la energía provocada por diversos tipos de radiaciones en los ecosistemas. En el presente artículo, presentamos información pertinente con objeto de mostrar una panorámica acerca de la influencia de las radiaciones en los organismos y su ambiente. Basándonos en estudios recopilados de la literatura, e investigaciones llevadas a cabo en nuestro laboratorio, se tratarán de manera general las consecuencias que tiene el incremento de la cantidad de radiación en la biósfera.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alexieva, V., I. Sergiev, S. Mapelli, E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment. 24(12) 1337-1344. doi:10.1046/j.1365-3040.2001.00778.x

Androjna, C., B. Fort, M. Zborowski, R.J. Midura. 2014. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 35(6) 396-405. doi:10.1002/bem.21855

Bancroft, B.A., N.J. Baker, A.R. Blaustein. 2007. Effects of UVB radiation on marine and freshwater organisms: A synthesis through meta-analysis. Ecology Letters. 10(4) 332-345. doi:10.1111/j.1461-0248.2007.01022.x

Belova, N.A., D. Acosta-Avalos. 2015. The effect of extremely low frequency alternating magnetic field on the behavior of animals in the presence of the geomagnetic field. Journal of Biophysics. 2015, 1-8. doi:10.1155/2015/423838

Besson, B., L. Pourcelot, E. Lucot, P. Badot. 2009. Variations in the transfer of radiocesium (137Cs) and radiostrontium (90Sr) from milk to cheese. Journal of Dairy Science. 92(11) 5363-5370. doi:10.3168/jds.2009-2357

Bonin A., A. Tsilanizara. 2017. A method to improve dose assessment by reconstruction of the complete isotopes inventory. Radiat Prot Dosimetry. 175(1): 46-57. doi:10.1093/rpd/ncw266

Bor-Sen, C., W. Shang-Wen, L. Cheng-Wei. 2015. On the calculation of system entropy in nonlinear stochastic biological networks. Entropy. 17(10) 6801-6833. doi:10.3390/e17106801

Boucher, O. 2010. Stratospheric ozone, ultraviolet radiation and climate change. Weather. 65:105–110. doi:10.1002/wea.451

Brehwens, K., E. Staaf, S. Haghdoost, A.J. González, A. Wojcik. 2010. Cytogenetic damage in cells exposed to ionizing radiation under conditions of a changing dose rate. Radiation Research, 173(3), 283-289. doi:10.1667/RR2012.1

Chang, C., M. Villalun, S. Geib, C. Goodman, J. Ringbauer, D. Stanley. 2015. Pupal X-ray irradiation influences protein expression in adults of the oriental fruit fly, Bactrocera dorsalis. Journal of Insect Physiology. 76, 7-16. doi:10.1016/j.jinsphys.2015.03.002

Cullings, H.M., E.J. Grant, S.D. Egbert, T. Watanabe, T. Oda, F. Nakamura, T. Yamashita, H. Fuchi, S. Funamoto, K. Marumo, R. Sakata, Y. Kodama, K. Ozasa, K. Kodama. 2017. DS02R1: Improvements to atomic bomb survivors' input data and implementation of dosimetry system 2002 (DS02) and resulting changes in estimated doses. Health Phys. 112(1):56-97. doi:10.1097/HP.0000000000000598

Gifford, D. 1989. Dose limits for ionizing-radiation. Contemporary Physics. 30(5), 367-376. doi:10.1080/00107518908213775

Heredia–Rojas, J. A., A.O. Rodríguez‐De la Fuente, M. Velazco‐Campos, C.H. Leal‐Garza, L.E. Rodríguez‐Flores, B. De la Fuente‐Cortez. 2001. Cytological effects of 60 Hz magnetic fields on human lymphocytes in vitro: Sister‐chromatid exchanges, cell kinetics and mitotic rate. Bioelectromagnetics. 22(3)145-149. doi:10.1002/bem.32

Heredia-Rojas, J.A., D.E. Caballero-Hernández, A.O. Rodríguez-De la Fuente, G. Ramos-Alfano, L.E. Rodríguez-Flores. 2004. Lack of alterations on meiotic chromosomes and morphological characteristics of male germ cells in mice exposed to a 60 Hz and 2.0 mT magnetic field. Bioelectromagnetics. 25(1)63-68. doi:10.1002/bem.10184

Hollósy, F. 2002. Effects of ultraviolet radiation on plant cells. Micron. 33(2)179-197. doi:10.1016/S0968-4328(01)00011-7

Hu, J., T. Zhang, D. Xu, J. Qu, L. Qin, J. Zhou, H. Lu. 2015. Combined magnetic fields accelerate bone‐tendon junction injury healing through osteogenesis. Scandinavian Journal of Medicine & Science in Sports. 25(3) 398-405. doi:10.1111/sms.12251

Jaworowski, Z. 2010. Observations on the Chernobyl disaster and LNT. Dose-Response. 8(2)148-171. doi:10.2203/dose-response.09-029.Jaworowski

Jeggo, P., M. Lobrich. 2006. Radiation-induced DNA damage responses. Radiation Protection Dosimetry. 122(1-4) 124-127. doi:10.1093/rpd/nc1495

Joshi, R., R. Gangabhagirathi, S. Venu, S. Adhikari, T. Mukherjee. 2012. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radical Research. 46(1) 11-20. doi:10.3109/10715762.2011.633518

Ko, G., M.W. First, H.A. Burge. 2001. The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Environmental Health Perspectives. 110(1) 95-101. doi:10.1289/ehp.0211095

Libby, W. F. 1955. Radioactive Fall-out. Bulletin of The Atomic Scientists. 11(7), 256-260.

Maalouf M., M. Durante, N. Foray. 2011. Biological effects of space radiation on human cells: history, advances and outcomes. J Radiat Res. 52 (2): 126-146. doi:10.1269/jrr.10128

Møller, A.P., T.A. Mousseau. 2013. The effects of natural variation in background radioactivity on humans, animals and other organisms. Biological Reviews. 88(1) 226-254. doi:10.1111/j.1469-185X.2012.00249.x

Nagataki S. 2016. Thoughts on relief for atomic bomb survivors since Obama's visit to Hiroshima. Lancet. 388(10054):1878-1879. doi: 10.1016/S0140-6736(16)31728-7.

Newman, P.A., L.D. Oman, A.R. Douglass, E.L. Fleming, S.M. Frith, M.M. Hurwitz, S.R. Kawa, C.H. Jackman, N.A. Krotkov, E.R. Nash, J.E. Nielsen, S. Pawson, R.S. Stolarski, G.J.M. Velders. 2009. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmospheric Chemistry and Physics. 9(6) 2113-2128. doi.org/10.5194/acp-9-2113-2009

Osterwalder, U., M. Sohn, B. Herzog. 2014. Global state of sunscreens. Photodermatology. Photoimmunology & Photomedicine. 30: 62–80. doi:10.1111/phpp.12112.

Parikh J.R., R.A. Geise, E.I. Bluth, C.E. Bender, G. Sze, A.K. Jones. 2017. Potential radiation-related effects on radiologists. AJR Am J Roentgenol. 208(3):595-602. doi: 10.2214/AJR.16.17212.

Pool R. 1990. Is there an EMF-cancer connection? Science. 249(4973):1096-1098.

Qin, B., U.R. Pothakamury, G.V. Barbosa-Cánovas, B.G. Swanson. 1996. Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Critical Reviews in Food Science and Nutrition. 36(6) 603-627.

Robson, T. M., S.M. Hartikainen, P.J. Aphalo. 2015. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? Plant Cell Environ. 38: 953–967. doi:10.1111/pce.12405

Rodríguez-De la Fuente, A.O., J.A. Heredia-Rojas, B.D. Mata-Cárdenas, J. Vargas-Villarreal, L.E. Rodríguez-Flores, I. Balderas-Candanosa, J.M. Alcocer-González. 2008. Entamoeba invadens: Influence of 60 hz magnetic fields on growth and differentiation. Experimental Parasitology. 119(2) 202-206. doi:10.1016/j.exppara.2008.01.006

Rodríguez de la Fuente, A.O., J.M. Alcocer-González, J.A. Heredia-Rojas, I. Balderas-Candanosa, L.E. Rodríguez-Flores, C. Rodríguez-Padilla, R.S. Taméz-Guerra. 2009. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: An in vitro study. Cell Biology International. 33(3) 419-423. doi:10.1016/j.cellbi.2008.09.014

Rodríguez-De la Fuente A.O., J.M. Alcocer-González, J.A. Heredia-Rojas, C. Rodríguez-Padilla, L.E. Rodríguez-Flores, M.A. Santoyo-Stephano, E. Castañeda-Garza, R.S. Taméz-Guerra. 2012. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study. Cell Biol Int Rep. 26;19(1):e00014. doi: 10.1042/CBR20110010.

Rutkowski, R., A. Straburzyńska-Lupa, P. Korman, W. Romanowski, M. Gizińska. 2011. Thermal effectiveness of different IR radiators employed in rheumatoid hand therapy as assessed by thermovisual examination. Photochemistry and Photobiology. 87: 1442–1446. doi: 10.1111/j.1751-1097.2011.00975.x

Sarghein, S., J. Carapetian, J. Khara. 2011. The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum A.DC.). Turkish Journal of Biology. 35(1) 69-77. doi:10.3906/biy-0903-11

Shruthi, B., P. Vinodhkumar, B. Kashyap, P. Reddy. 2013. Use of microwave in diagnostic pathology. Journal of Cancer Research and Therapeutics. 9(3), 351-355. doi:10.4103/0973-1482.119301

Swiderek, P. 2006. Fundamental processes in radiation damage of DNA. Angew. Chem. Int. Ed. 45: 4056–4059. doi: 10.1002/anie.200600614

Valadez-Lira, J.A., N. Medina-Chavez, A. Orozco-Flores, J.A. Heredia-Rojas, A.O. Rodriguez-de la Fuente, R. Gomez-Flores, J.M. Alcocer-Gonzalez, P. Tamez-Guerra. 2017. Alterations of immune parameters on Trichoplusia ni (lepidoptera: Noctuidae) larvae exposed to extremely low-frequency electromagnetic fields. Environmental Entomology. 46(2) 376-382. doi:10.1093/ee/nvx037

Wertheimer N., E. Leeper. 1979. Electrical wiring configurations and childhood cancer. American Journal of Epidemiology. 109:273-284. https://www.ncbi.nlm.nih.gov/pubmed/453167

Wiltschko, W., R. Wiltschko. 2005. Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 191(8) 675-693. doi:10.1007/s00359-005-0627-7

Yalemar, J.A., A.H. Hara, S.H. Saul, E.B. Jang, J.H. Moy. 2001. Effects of gamma irradiation on the life stages of yellow flower thrips, Frankliniella schultzei (Trybom) (Thysanoptera: Thripidae). Annals of Applied Biology. 138: 263–268. doi: 10.1111/j.1744-7348.2001.tb00111.x

Zhang, Y., J. Lai, G. Ruan, C. Chen, D. Wang. 2016. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: A pooled analysis of epidemiologic studies. Environment International. 88: 36-43. doi:10.1016/j.envint.2015.12.012

Descargas

Publicado

2018-01-31

Cómo citar

Heredia Rojas, J. A., Heredia Rodríguez, O., & Rodríguez de la Fuente, A. O. (2018). Las radiaciones y el ambiente. Biología Y Sociedad, 1(1), 85–98. https://doi.org/10.29105/bys1.1-63

Número

Sección

Artículos

Categorías