Las radiaciones y el ambiente
DOI:
https://doi.org/10.29105/bys1.1-63Keywords:
Radioecology, ionizing radiation, non-ionizing radiation, Radiation BiologyAbstract
The advent of the nuclear age, coupled with the development of various technologies especially in telecommunications, has led to a generalized increase of different types of radiation in our environment. In addition, the already known decrease in the ozone layer causes such rapid changes in the radiological environment that there are not enough studies to conclusively demonstrate the potential biological risk associated with this radiation. Biological sciences have reached such a degree of specialization that there is a branch of Ecology, the so-called "Radioecology" which deals with the study of the impact of energy caused by different types of radiation in ecosystems. The aim of the current article is to present appropriate information in order to show an overview about the influence of the radiation in the environment. Based on studies compiled from the literature, and research carried out in our laboratory, the consequences of an increased radiation rate in the biosphere are discussed.
Downloads
References
Alexieva, V., I. Sergiev, S. Mapelli, E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment. 24(12) 1337-1344. doi:10.1046/j.1365-3040.2001.00778.x
Androjna, C., B. Fort, M. Zborowski, R.J. Midura. 2014. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 35(6) 396-405. doi:10.1002/bem.21855
Bancroft, B.A., N.J. Baker, A.R. Blaustein. 2007. Effects of UVB radiation on marine and freshwater organisms: A synthesis through meta-analysis. Ecology Letters. 10(4) 332-345. doi:10.1111/j.1461-0248.2007.01022.x
Belova, N.A., D. Acosta-Avalos. 2015. The effect of extremely low frequency alternating magnetic field on the behavior of animals in the presence of the geomagnetic field. Journal of Biophysics. 2015, 1-8. doi:10.1155/2015/423838
Besson, B., L. Pourcelot, E. Lucot, P. Badot. 2009. Variations in the transfer of radiocesium (137Cs) and radiostrontium (90Sr) from milk to cheese. Journal of Dairy Science. 92(11) 5363-5370. doi:10.3168/jds.2009-2357
Bonin A., A. Tsilanizara. 2017. A method to improve dose assessment by reconstruction of the complete isotopes inventory. Radiat Prot Dosimetry. 175(1): 46-57. doi:10.1093/rpd/ncw266
Bor-Sen, C., W. Shang-Wen, L. Cheng-Wei. 2015. On the calculation of system entropy in nonlinear stochastic biological networks. Entropy. 17(10) 6801-6833. doi:10.3390/e17106801
Boucher, O. 2010. Stratospheric ozone, ultraviolet radiation and climate change. Weather. 65:105–110. doi:10.1002/wea.451
Brehwens, K., E. Staaf, S. Haghdoost, A.J. González, A. Wojcik. 2010. Cytogenetic damage in cells exposed to ionizing radiation under conditions of a changing dose rate. Radiation Research, 173(3), 283-289. doi:10.1667/RR2012.1
Chang, C., M. Villalun, S. Geib, C. Goodman, J. Ringbauer, D. Stanley. 2015. Pupal X-ray irradiation influences protein expression in adults of the oriental fruit fly, Bactrocera dorsalis. Journal of Insect Physiology. 76, 7-16. doi:10.1016/j.jinsphys.2015.03.002
Cullings, H.M., E.J. Grant, S.D. Egbert, T. Watanabe, T. Oda, F. Nakamura, T. Yamashita, H. Fuchi, S. Funamoto, K. Marumo, R. Sakata, Y. Kodama, K. Ozasa, K. Kodama. 2017. DS02R1: Improvements to atomic bomb survivors' input data and implementation of dosimetry system 2002 (DS02) and resulting changes in estimated doses. Health Phys. 112(1):56-97. doi:10.1097/HP.0000000000000598
Gifford, D. 1989. Dose limits for ionizing-radiation. Contemporary Physics. 30(5), 367-376. doi:10.1080/00107518908213775
Heredia–Rojas, J. A., A.O. Rodríguez‐De la Fuente, M. Velazco‐Campos, C.H. Leal‐Garza, L.E. Rodríguez‐Flores, B. De la Fuente‐Cortez. 2001. Cytological effects of 60 Hz magnetic fields on human lymphocytes in vitro: Sister‐chromatid exchanges, cell kinetics and mitotic rate. Bioelectromagnetics. 22(3)145-149. doi:10.1002/bem.32
Heredia-Rojas, J.A., D.E. Caballero-Hernández, A.O. Rodríguez-De la Fuente, G. Ramos-Alfano, L.E. Rodríguez-Flores. 2004. Lack of alterations on meiotic chromosomes and morphological characteristics of male germ cells in mice exposed to a 60 Hz and 2.0 mT magnetic field. Bioelectromagnetics. 25(1)63-68. doi:10.1002/bem.10184
Hollósy, F. 2002. Effects of ultraviolet radiation on plant cells. Micron. 33(2)179-197. doi:10.1016/S0968-4328(01)00011-7
Hu, J., T. Zhang, D. Xu, J. Qu, L. Qin, J. Zhou, H. Lu. 2015. Combined magnetic fields accelerate bone‐tendon junction injury healing through osteogenesis. Scandinavian Journal of Medicine & Science in Sports. 25(3) 398-405. doi:10.1111/sms.12251
Jaworowski, Z. 2010. Observations on the Chernobyl disaster and LNT. Dose-Response. 8(2)148-171. doi:10.2203/dose-response.09-029.Jaworowski
Jeggo, P., M. Lobrich. 2006. Radiation-induced DNA damage responses. Radiation Protection Dosimetry. 122(1-4) 124-127. doi:10.1093/rpd/nc1495
Joshi, R., R. Gangabhagirathi, S. Venu, S. Adhikari, T. Mukherjee. 2012. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radical Research. 46(1) 11-20. doi:10.3109/10715762.2011.633518
Ko, G., M.W. First, H.A. Burge. 2001. The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Environmental Health Perspectives. 110(1) 95-101. doi:10.1289/ehp.0211095
Libby, W. F. 1955. Radioactive Fall-out. Bulletin of The Atomic Scientists. 11(7), 256-260.
Maalouf M., M. Durante, N. Foray. 2011. Biological effects of space radiation on human cells: history, advances and outcomes. J Radiat Res. 52 (2): 126-146. doi:10.1269/jrr.10128
Møller, A.P., T.A. Mousseau. 2013. The effects of natural variation in background radioactivity on humans, animals and other organisms. Biological Reviews. 88(1) 226-254. doi:10.1111/j.1469-185X.2012.00249.x
Nagataki S. 2016. Thoughts on relief for atomic bomb survivors since Obama's visit to Hiroshima. Lancet. 388(10054):1878-1879. doi: 10.1016/S0140-6736(16)31728-7.
Newman, P.A., L.D. Oman, A.R. Douglass, E.L. Fleming, S.M. Frith, M.M. Hurwitz, S.R. Kawa, C.H. Jackman, N.A. Krotkov, E.R. Nash, J.E. Nielsen, S. Pawson, R.S. Stolarski, G.J.M. Velders. 2009. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmospheric Chemistry and Physics. 9(6) 2113-2128. doi.org/10.5194/acp-9-2113-2009
Osterwalder, U., M. Sohn, B. Herzog. 2014. Global state of sunscreens. Photodermatology. Photoimmunology & Photomedicine. 30: 62–80. doi:10.1111/phpp.12112.
Parikh J.R., R.A. Geise, E.I. Bluth, C.E. Bender, G. Sze, A.K. Jones. 2017. Potential radiation-related effects on radiologists. AJR Am J Roentgenol. 208(3):595-602. doi: 10.2214/AJR.16.17212.
Pool R. 1990. Is there an EMF-cancer connection? Science. 249(4973):1096-1098.
Qin, B., U.R. Pothakamury, G.V. Barbosa-Cánovas, B.G. Swanson. 1996. Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Critical Reviews in Food Science and Nutrition. 36(6) 603-627.
Robson, T. M., S.M. Hartikainen, P.J. Aphalo. 2015. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? Plant Cell Environ. 38: 953–967. doi:10.1111/pce.12405
Rodríguez-De la Fuente, A.O., J.A. Heredia-Rojas, B.D. Mata-Cárdenas, J. Vargas-Villarreal, L.E. Rodríguez-Flores, I. Balderas-Candanosa, J.M. Alcocer-González. 2008. Entamoeba invadens: Influence of 60 hz magnetic fields on growth and differentiation. Experimental Parasitology. 119(2) 202-206. doi:10.1016/j.exppara.2008.01.006
Rodríguez de la Fuente, A.O., J.M. Alcocer-González, J.A. Heredia-Rojas, I. Balderas-Candanosa, L.E. Rodríguez-Flores, C. Rodríguez-Padilla, R.S. Taméz-Guerra. 2009. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: An in vitro study. Cell Biology International. 33(3) 419-423. doi:10.1016/j.cellbi.2008.09.014
Rodríguez-De la Fuente A.O., J.M. Alcocer-González, J.A. Heredia-Rojas, C. Rodríguez-Padilla, L.E. Rodríguez-Flores, M.A. Santoyo-Stephano, E. Castañeda-Garza, R.S. Taméz-Guerra. 2012. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study. Cell Biol Int Rep. 26;19(1):e00014. doi: 10.1042/CBR20110010.
Rutkowski, R., A. Straburzyńska-Lupa, P. Korman, W. Romanowski, M. Gizińska. 2011. Thermal effectiveness of different IR radiators employed in rheumatoid hand therapy as assessed by thermovisual examination. Photochemistry and Photobiology. 87: 1442–1446. doi: 10.1111/j.1751-1097.2011.00975.x
Sarghein, S., J. Carapetian, J. Khara. 2011. The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum A.DC.). Turkish Journal of Biology. 35(1) 69-77. doi:10.3906/biy-0903-11
Shruthi, B., P. Vinodhkumar, B. Kashyap, P. Reddy. 2013. Use of microwave in diagnostic pathology. Journal of Cancer Research and Therapeutics. 9(3), 351-355. doi:10.4103/0973-1482.119301
Swiderek, P. 2006. Fundamental processes in radiation damage of DNA. Angew. Chem. Int. Ed. 45: 4056–4059. doi: 10.1002/anie.200600614
Valadez-Lira, J.A., N. Medina-Chavez, A. Orozco-Flores, J.A. Heredia-Rojas, A.O. Rodriguez-de la Fuente, R. Gomez-Flores, J.M. Alcocer-Gonzalez, P. Tamez-Guerra. 2017. Alterations of immune parameters on Trichoplusia ni (lepidoptera: Noctuidae) larvae exposed to extremely low-frequency electromagnetic fields. Environmental Entomology. 46(2) 376-382. doi:10.1093/ee/nvx037
Wertheimer N., E. Leeper. 1979. Electrical wiring configurations and childhood cancer. American Journal of Epidemiology. 109:273-284. https://www.ncbi.nlm.nih.gov/pubmed/453167
Wiltschko, W., R. Wiltschko. 2005. Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 191(8) 675-693. doi:10.1007/s00359-005-0627-7
Yalemar, J.A., A.H. Hara, S.H. Saul, E.B. Jang, J.H. Moy. 2001. Effects of gamma irradiation on the life stages of yellow flower thrips, Frankliniella schultzei (Trybom) (Thysanoptera: Thripidae). Annals of Applied Biology. 138: 263–268. doi: 10.1111/j.1744-7348.2001.tb00111.x
Zhang, Y., J. Lai, G. Ruan, C. Chen, D. Wang. 2016. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: A pooled analysis of epidemiologic studies. Environment International. 88: 36-43. doi:10.1016/j.envint.2015.12.012