Los metabolitos secundarios como agentes antimicrobianos
DOI:
https://doi.org/10.29105/bys6.12-94Palabras clave:
Antimicrobianos, Farmacorresistencia, Metabolitos secundariosResumen
Los agentes antimicrobianos son de suma importancia debido a su uso en el tratamiento contra agentes
infecciosos. Muchos de los agentes antimicrobianos conocidos y nuevas moléculas recién descubiertas son metabolitos secundarios de microrganismos bacterianos y fúngicos, así como de diversas plantas. Los metabolitos secundarios son compuestos producidos por un microorganismo o una planta y no son requeridos para su desarrollo, crecimiento, o reproducción. Estos compuestos son sometidos a investigación con la finalidad de utilizarse clínicamente tras demostrar su eficacia y seguridad, lo que brinda la oportunidad de ampliar las opciones terapéuticas disponibles hoy en día. Sin embargo, tenemos una carrera a contrarreloj entre el desarrollo de nuevos agentes antimicrobianos y el surgimiento de microorganismos farmacorresistentes. En este artículo de divulgación, damos a conocer algunos de los metabolitos secundarios empleados cotidianamente como agentes antimicrobianos y su origen, así como nuevas moléculas bajo estudio con potencial uso terapéutico.
Descargas
Citas
Abraham, E. P., Chain, E., Fletcher, C. M., Florey, H. W., Gardner, A. D., Heatley, N. G. yJennings, M. A. 1992. Further observations on penicillin. 1941. Eur J Clin Pharmacol 42(1): 3-9.
Alibi, S., Crespo, D. yNavas, J. 2021. Plant-Derivatives Small Molecules with Antibacterial Activity. Antibiotics (Basel) 10(3).DOI: 10.3390/antibiotics10030231.
AlSheikh, H. M. A., Sultan, I., Kumar, V., Rather, I. A., Al-Sheikh, H., Tasleem Jan, A. yHaq, Q. M. R. 2020. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel) 9(8).DOI: 10.3390/antibiotics9080480.
Alvarez Martínez, M. O. yGarcía del Pozo, J. A. 2002. Eritromicina. Descubrimiento, características y aplicaciones. Offarm 21(2): 78-83.
Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J. yDevkota, H. P. 2019. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem Biol Interact 308: 294-303.DOI: 10.1016/j.cbi.2019.05.050.
Bhatia, P., Sharma, A., George, A. J., Anvitha, D., Kumar, P., Dwivedi, V. P. yChandra, N. S. 2021. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 7(2): e06310.DOI: 10.1016/j.heliyon.2021.e06310.
Bittner, A., Hause, B. yBaier, M. 2021. Cold-priming causes dampening of oxylipin biosynthesis and signalling during the early cold- and light-triggering response of Arabidopsis thaliana. J Exp Bot 72(20): 7163-7179.DOI: 10.1093/jxb/erab314.
Boyd, N. K., Teng, C. yFrei, C. R. 2021. Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus On Drug Repurposing. Front Cell Infect Microbiol 11: 684515.DOI: 10.3389/fcimb.2021.684515.
Burnett-Boothroyd, S. C. yMcCarthy, B. J. (2011). 13 - Antimicrobial treatments of textiles for hygiene and infection control applications: an industrial perspective. Textiles for Hygiene and Infection Control. B. J. McCarthy, Woodhead Publishing: 196-209.
de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L. yde Araújo, J. M. 2012. Antibiotics produced by Streptomyces. The Brazilian Journal of Infectious Diseases 16(5): 466-471.DOI: https://doi.org/10.1016/j.bjid.2012.08.014.
Efstratiou, E., Hussain, A. I., Nigam, P. S., Moore, J. E., Ayub, M. A. yRao, J. R. 2012. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement Ther Clin Pract 18(3): 173-176.DOI: 10.1016/j.ctcp.2012.02.003.
Feng, X., Cao, S., Qiu, F. yZhang, B. 2020. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther 216: 107650.DOI: 10.1016/j.pharmthera.2020.107650.
Fleming, A. (1929). On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzæ, Br J Exp Pathol. 1929 Jun;10(3):226-36.
Gao, S. S., Hothersall, J., Wu, J., Murphy, A. C., Song, Z., Stephens, E. R., Thomas, C. M., Crump, M. P., Cox, R. J., Simpson, T. J. yWillis, C. L. 2014. Biosynthesis of mupirocin by Pseudomonas fluorescens NCIMB 10586 involves parallel pathways. J Am Chem Soc 136(14): 5501-5507.DOI: 10.1021/ja501731p.
Garcia, S. 2020. Pandemics and Traditional Plant-Based Remedies. A Historical-Botanical Review in the Era of COVID19. Front Plant Sci 11: 571042.DOI: 10.3389/fpls.2020.571042.
Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V., Zamyatnin, A. A., Jr. yIkryannikova, L. N. 2020. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics (Basel) 9(4).DOI: 10.3390/antibiotics9040170.
Gurjar, M. 2015. Colistin for lung infection: an update. Journal of Intensive Care 3(1): 3.DOI: 10.1186/s40560-015-0072-9.
Haines, R. R., Putsathit, P., Tai, A. S. yHammer, K. A. 2022. Antimicrobial effects of Melaleuca alternifolia (tea tree) essential oil against biofilm-forming multidrug-resistant cystic fibrosis-associated Pseudomonas aeruginosa as a single agent and in combination with commonly nebulized antibiotics. Lett Appl Microbiol 75(3): 578-587.DOI: 10.1111/lam.13589.
Hamel, M., Rolain, J. M. yBaron, S. A. 2021. The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms 9(2).DOI: 10.3390/microorganisms9020442.
Hodgkin, D. C. 1949. The X-ray analysis of the structure of penicillin. Adv Sci 6(22): 85-89.
Hutchings, M. I., Truman, A. W. yWilkinson, B. 2019. Antibiotics: past, present and future. Curr Opin Microbiol 51: 72-80.DOI: 10.1016/j.mib.2019.10.008.
Khoshnood, S., Heidary, M., Asadi, A., Soleimani, S., Motahar, M., Savari, M., Saki, M. yAbdi, M. 2019. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed Pharmacother 109: 1809-1818.DOI: 10.1016/j.biopha.2018.10.131.
Koehn, F. E. yCarter, G. T. 2005. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4(3): 206-220.DOI: 10.1038/nrd1657.
Miethke, M., Pieroni, M., Weber, T., Bronstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., Bode, H. B., Moreira, R., Li, Y., Luzhetskyy, A., Medema, M. H., Pernodet, J. L., Stadler, M., Tormo, J. R., Genilloud, O., Truman, A. W., Weissman, K. J., Takano, E., Sabatini, S., Stegmann, E., Brotz-Oesterhelt, H., Wohlleben, W., Seemann, M., Empting, M., Hirsch, A. K. H., Loretz, B., Lehr, C. M., Titz, A., Herrmann, J., Jaeger, T., Alt, S., Hesterkamp, T., Winterhalter, M., Schiefer, A., Pfarr, K., Hoerauf, A., Graz, H., Graz, M., Lindvall, M., Ramurthy, S., Karlen, A., van Dongen, M., Petkovic, H., Keller, A., Peyrane, F., Donadio, S., Fraisse, L., Piddock, L. J. V., Gilbert, I. H., Moser, H. E. yMuller, R. 2021. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 5(10): 726-749.DOI: 10.1038/s41570-021-00313-1.
Mittal, R. P., Rana, A. yJaitak, V. 2019. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Curr Drug Targets 20(6): 605-624.DOI: 10.2174/1389450119666181031122917.
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., Agarwal, R., Akech, S., Albertson, S., Amuasi, J., Andrews, J., Aravkin, A., Ashley, E., Bailey, F., Baker, S., Basnyat, B., Bekker, A., Bender, R., Bethou, A., Bielicki, J., Boonkasidecha, S., Bukosia, J., Carvalheiro, C., Castañeda-Orjuela, C., Chansamouth, V., Chaurasia, S., Chiurchiù, S., Chowdhury, F., Cook, A. J., Cooper, B., Cressey, T. R., Criollo-Mora, E., Cunningham, M., Darboe, S., Day, N. P. J., De Luca, M., Dokova, K., Dramowski, A., Dunachie, S. J., Eckmanns, T., Eibach, D., Emami, A., Feasey, N., Fisher-Pearson, N., Forrest, K., Garrett, D., Gastmeier, P., Giref, A. Z., Greer, R. C., Gupta, V., Haller, S., Haselbeck, A., Hay, S. I., Holm, M., Hopkins, S., Iregbu, K. C., Jacobs, J., Jarovsky, D., Javanmardi, F., Khorana, M., Kissoon, N., Kobeissi, E., Kostyanev, T., Krapp, F., Krumkamp, R., Kumar, A., Kyu, H. H., Lim, C., Limmathurotsakul, D., Loftus, M. J., Lunn, M., Ma, J., Mturi, N., Munera-Huertas, T., Musicha, P., Mussi-Pinhata, M. M., Nakamura, T., Nanavati, R., Nangia, S., Newton, P., Ngoun, C., Novotney, A., Nwakanma, D., Obiero, C. W., Olivas-Martinez, A., Olliaro, P., Ooko, E., Ortiz-Brizuela, E., Peleg, A. Y., Perrone, C., Plakkal, N., Ponce-de-Leon, A., Raad, M., Ramdin, T., Riddell, A., Roberts, T., Robotham, J. V., Roca, A., Rudd, K. E., Russell, N., Schnall, J., Scott, J. A. G., Shivamallappa, M., Sifuentes-Osornio, J., Steenkeste, N., Stewardson, A. J., Stoeva, T., Tasak, N., Thaiprakong, A., Thwaites, G., Turner, C., Turner, P., van Doorn, H. R., Velaphi, S., Vongpradith, A., Vu, H., Walsh, T., Waner, S., Wangrangsimakul, T., Wozniak, T., Zheng, P., Sartorius, B., Lopez, A. D., Stergachis, A., Moore, C., Dolecek, C. yNaghavi, M. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399(10325): 629-655.DOI: 10.1016/S0140-6736(21)02724-0.
Nakajima, S. 2003. [The origin of cephalosporins]. Yakushigaku Zasshi 37(2): 119-127.
Organization, W. H. (2021). Informe mundial sobre la malaria 2021.
Organization, W. H. 2023. Peste.
Pancu, D. F., Scurtu, A., Macasoi, I. G., Marti, D., Mioc, M., Soica, C., Coricovac, D., Horhat, D., Poenaru, M. yDehelean, C. 2021. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity-A Pharmaco-Toxicological Screening. Antibiotics (Basel) 10(4).DOI: 10.3390/antibiotics10040401.
Pavic, V., Jakovljevic, M., Molnar, M. yJokic, S. 2019. Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Leaves by Supercritical Fluid Extraction and Their Antioxidant and Antibacterial Activity. Plants (Basel) 8(1).DOI: 10.3390/plants8010016.
Pranskuniene, Z., Balciunaite, R., Simaitiene, Z. yBernatoniene, J. 2022. Herbal Medicine Uses for Respiratory System Disorders and Possible Trends in New Herbal Medicinal Recipes during COVID-19 in Pasvalys District, Lithuania. Int J Environ Res Public Health 19(15).DOI: 10.3390/ijerph19158905.
Price, R. 2016. O'Neill report on antimicrobial resistance: funding for antimicrobial specialists should be improved. Eur J Hosp Pharm 23(4): 245-247.DOI: 10.1136/ejhpharm-2016-001013.
Purssell, E. (2020). Antimicrobials. Understanding Pharmacology in Nursing Practice. P. Hood and E. Khan. Cham, Springer International Publishing: 147-165.
Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Rodríguez-Sanoja, R., Sánchez, S. yLangley, E. 2010. Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36(2): 146-167.DOI: 10.3109/10408410903489576.
Salud, O. P. d. l. (2023). "Peste." 2023, from https://www3.paho.org/hq/index.php?option=com_content&view=article&id=8933:2013-informacion-general-peste&Itemid=0&lang=pt#gsc.tab=0.
Schmidt, S., Heimesaat, M. M., Fischer, A., Bereswill, S. yMelzig, M. F. 2014. Saponins increase susceptibility of vancomycin-resistant enterococci to antibiotic compounds. Eur J Microbiol Immunol (Bp) 4(4): 204-212.DOI: 10.1556/EUJMI-D-14-00029.
Swamy, M. K., Akhtar, M. S. ySinniah, U. R. 2016. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid Based Complement Alternat Med 2016: 3012462.DOI: 10.1155/2016/3012462.
Turker, A. U. yUsta, C. 2008. Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities. Nat Prod Res 22(2): 136-146.DOI: 10.1080/14786410701591663.
Waksman, S. A., Schatz, A. yReynolds, D. M. 2010. Production of antibiotic substances by actinomycetes. Ann N Y Acad Sci 1213: 112-124.DOI: 10.1111/j.1749-6632.2010.05861.x.
Wei, Z., Shi, X., Lian, R., Wang, W., Hong, W. yGuo, S. 2019. Exclusive Production of Gentamicin C1a from Micromonospora purpurea by Metabolic Engineering. Antibiotics (Basel) 8(4).DOI: 10.3390/antibiotics8040267.
Xu, L., Huang, H., Wei, W., Zhong, Y., Tang, B., Yuan, H., Zhu, L., Huang, W., Ge, M., Yang, S., Zheng, H., Jiang, W., Chen, D., Zhao, G.-P. yZhao, W. 2014. Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics 15(1): 363.DOI: 10.1186/1471-2164-15-363.
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2023 Laiju Kuzhuppillymyal-Prabhakarankutty, Adrián Martínez-Meléndez, Flora Cruz-López
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.