Essential oils are a natural alternative to treat viral diseases
DOI:
https://doi.org/10.29105/bys7.14-131Keywords:
essential oils, viruses, antiviralAbstract
Viruses are agents with the ability to invade or infect any living being, causing serious and even deadly diseases. The main defense against these viral agents is mediated by the immune system. In addition, antiviral treatments can be used to reduce viral load. However, the commercial antiviral drugs have certain limitations, including the potential side effects that they may cause in the body, as well as the risk of cellular toxicity. Recently, research has focused on the use of essential oils as new alternatives in the search for molecules with antiviral activity. The present work focuses on general aspects of viruses, as well as several studies in which the antiviral properties of essential oils have been evaluated.
Downloads
References
Abou Baker, D. H., Amarowicz, R., Kandeil, A., Ali, M. A., y Ibrahim, E. A. 2021. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. Journal of Agriculture and Food Research, 4(100135), 100135. https://doi.org/10.1016/j.jafr.2021.100135 DOI: https://doi.org/10.1016/j.jafr.2021.100135
Adiningsih, S., Widiyanti, M., y Rokhmad, F.M. 2023. Tenofovir Lamivudine Efavirenz Side Effect and Its Efficacy Among People Living with HIV in Jayapura. Proceedings of the 1st International Conference for Health Research, 158-169. https://doi.org/10.2991/978-94-6463-112-8_16 DOI: https://doi.org/10.2991/978-94-6463-112-8_16
Althwaiqeb, S. y Bordoni, B. 2023. Histology, B Cell Lymphocyte. In StatPearls. Treasure Island (FL): StatPearls Publishing. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK560905/
Ali, M., Lurwan, M., Halliru, S. N., y Salihi, A. M. 2020. Role of T-helper cells (CD4+ T cells) in human immune system against some microbial infection: a mini review. International Journal of Clinical Microbiology and Biochemical Technology, 3(1), 026-029. https://doi.org/10.29328/journal.ijcmbt.1001012 DOI: https://doi.org/10.29328/journal.ijcmbt.1001012
Astani, A., Reichling, J., y Schnitzler, P. 2010. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Research, 24(5), 673-679. https://doi.org/10.1002/ptr.2955 DOI: https://doi.org/10.1002/ptr.2955
Astani, A., Reichling, J., y Schnitzler, P. 2011. Screening for antiviral activities of isolated compounds from essential oils. Evidence-Based Complementary and Alternative Medicine: ECAM, 253643. https://doi.org/10.1093/ecam/nep187 DOI: https://doi.org/10.1093/ecam/nep187
Benencia, F., y Courréges, M. C. 2000. In vitro and in vivo activity of eugenol on human herpesvirus. Phytotherapy Research, 14(7), 495-500. https://doi.org/10.1002/1099-1573(200011)14:7<495::aid-ptr650>3.0.co;2-8 DOI: https://doi.org/10.1002/1099-1573(200011)14:7<495::AID-PTR650>3.0.CO;2-8
Bouazzi, S., Jmii, H., El Mokni, R., Faidi, K., Falconieri, D., Piras, A., Jaidane, H., Porcedda, S., y Hammami, S. 2018. Cytotoxic and antiviral activities of the essential oils from Tunisian Fern, Osmunda regalis. South African Journal of Botany, 118, 52-57. https://doi.org/10.1016/j.sajb.2018.06.015 DOI: https://doi.org/10.1016/j.sajb.2018.06.015
Burčul, F., Blaževic, I., Radan, M., Politeo, O. 2020. Terpenes, phenylpropanoids, sulfur and other essential oil constituents as inhibitors of cholinesterases. Curr Med Chem, 27(26): 4297-4343. DOI: https://doi.org/10.2174/0929867325666180330092607
Cagno, V., Sgorbini, B., Sanna, C., Cagliero, C., Ballero, M., Civra, A., Donalisio, M., Bicchi, C., Lembo, D., y Rubiolo, P. 2017. In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil. PLoS One, 12(2), 1-12. https://doi.org/ 10.1371/journal.pone.0172322 DOI: https://doi.org/10.1371/journal.pone.0172322
Carlson, C. J., Albery, G. F., Merow, C., Trisos, C. H., Zipfel, C. M., Eskew, E. A., Olival, K. J., Ross, N., y Bansal, S. 2022. Climate change increases cross-species viral transmission risk. Nature, 607(7919), 555–562. https://doi.org/10.1038/s41586-022-04788-w DOI: https://doi.org/10.1038/s41586-022-04788-w
CDC (Centro para el Control y la Prevención de Enfermedades). (2018, mayo 5). Historia de la pandemia de gripe de 1918. Disponible en https://www.cdc.gov/flu/pandemic-resources/1918-commemoration/1918-pandemic-history.htm
Chu Y., Zhao Z., Cai L., y Zhang G. 2022. Viral diversity and biogeochemical potential revealed in different prawn-culture sediments by virus-enriched metagenome analysis. Environmental Research, 210, 112901. https://doi.org/10.1016/j.envres.2022.112901. DOI: https://doi.org/10.1016/j.envres.2022.112901
Cifuentes-Munoz, N., El Najjar, F., y Dutch R.E. 2020. Viral cell-to-cell spread: conventional and non-conventional ways. Advances in Virus Research, 108, 85-125. DOI: https://doi.org/10.1016/bs.aivir.2020.09.002
Civitelli, L., Panella, S., Marcocci, M. E., De Petris, A, Garzoli, S., Pepi, F., Vavala, E., Ragno, R., Nencioni, L., Palamara, A. T., y Angiolella, L. 2014. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 21(6), 857-865. http://dx.doi.org/10.1016/j.phymed.2014.01.013 DOI: https://doi.org/10.1016/j.phymed.2014.01.013
Feriotto, G., Marchetti, N., Costa, V., Beninati, S., Federico, T., y Mischiati, C. 2018. Chemical composition of essential oils from Thymus vulgaris, Cymbopogon citratus and Rosmarinus officinalis and their effects on the HIV-1 Tat protein function. Chemistry & Biodiversity, 15(2), e1700436. https://doi.org/ 10.1002/cbdv.201700436 DOI: https://doi.org/10.1002/cbdv.201700436
Galán-Sánchez, F., Fernández-Gutiérrez Del Álamo, C., y Rodríguez-Iglesias, M. 2014. Infecciones víricas [Viral infections]. Medicine, 11(49), 2885–2892. https://doi.org/10.1016/S0304-5412(14)70711-5 DOI: https://doi.org/10.1016/S0304-5412(14)70711-5
Gibbens, S. 2020. Las mejores formas de lavar las mascarillas. Disponible en https://www.nationalgeographic.es/ciencia/2020/05/las-mejores-formas-de-lavar-las-mascarillas
Gilling, D. H., Kitajima, M., Torrey J. R., y Bright, K.R. 2014. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology, 116, 1149-1163. https://doi.org/10.1111/jam.12453 DOI: https://doi.org/10.1111/jam.12453
Goméz, L. A., Stashenko, E., y Ocazionez, R. E. 2012. Comparative study on in vitro activities of citral, limonene and essential oils from Lippia citriodora and L. alba on yellow fever virus. Natural Product Communications, 8(2), 249-252. https://doi.org/10.1177/19345678x1300800230 DOI: https://doi.org/10.1177/1934578X1300800230
Haddad, J. G., Picard, M., Bénard, S., Desvignes, C., Després, P., Diotel, N., y El Kalamouni, C. 2019. Ayapana triplinervis essential oil and its main component thymohydroquinone dimethyl ether inhibit Zika virus at doses devoid of toxicity in zebrafish. Molecules, 24(19), 3447. https://doi.org/10.3390/molecules24193447 DOI: https://doi.org/10.3390/molecules24193447
Hsu, M., Safadi A. O., y Lui, F. 2022. Physiology, Stomach. In StatPearls. Treasure Island (FL): StatPearls Publishing. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK535425/
Krug, R. M., y Wagner, R. R. 2024. Virus. In Britannica. Disponible en https://www.britannica.com/science/virus
Kubica, T. F., Alves, S. H., Weiblen, R., y Lovato, L. T. 2014. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes. Brazilian Journal of Microbiology, 45(1), 209-214. https://doi.org/10.1590/S1517-83822014005000030 DOI: https://doi.org/10.1590/S1517-83822014005000030
Kulkarni, S. A., Nagarajan, S. K., Ramesh, V., Palaniyandi, V., Selvam, S. P., y Madhavan, T. 2020. Computational evaluation of major components form plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. Journal of Molecular Structure, 1221, 128823. https://doi.org/10.1016/j.molstruc.2020.128823 DOI: https://doi.org/10.1016/j.molstruc.2020.128823
Lammari, N., Ouahida, L., Hassen Meniai, A., y Elaissari, A. 2020. Encapsulation of essential oils via nanoprecipitation process: overview, progress, challenges and prospects. Pharmaceutics, 12(431), 1-21. doi:10.3390/pharmaceutics12050431 DOI: https://doi.org/10.3390/pharmaceutics12050431
Leung, N.H.L. 2021. Transmissibility and transmission of respiratory viruses. Nature Reviews. 19, 528-545. https://doi.org/10.1038/s41579-021-00535-6 DOI: https://doi.org/10.1038/s41579-021-00535-6
Levinson, W., Chin-Hong, P., Joyce, E.A., Nussbaum, J., y Schwartz, B. 2020. Structure. In W. Levinson, P. Chin-Hong, E. A. Joyce, J. Nussbaum, y B. Schwartz (Eds.), Review of Medical Microbiology & Immunology. McGraw Hill. https://accessmedicine.mhmedical.com/content.aspx?bookid=2867§ionid=242767700
Łusiak-Szelachowska, M., Weber-Dąbrowska, B., Żaczek, M., Borysowski, J., y Górski, A. 2020. The presence of bacteriophages in the human body: good, bad or neutral?. Microorganisms, 8(12). https://doi.org/10.3390/microorganisms8122012 DOI: https://doi.org/10.3390/microorganisms8122012
Mancianti F., y Ebani V. V. 2020. Biological activity of essential oils. Molecules, 25(3), 2–5. https://doi.org/10.3390/molecules25030678 DOI: https://doi.org/10.3390/molecules25030678
Meier, K., Thorkelsson, S.R., Quemin, E.R.J., y Rosenthal, M. 2021. Hantavirus replication cycle-an updated structural virology perspective. Viruses, 13(1561), 1-16. https://doi.org/10.3390/v13081561 DOI: https://doi.org/10.3390/v13081561
Meneses, R., Ocazionez, R. E., Martínez, J. R., y Stashenko, E. E. 2009. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Annals of Clinical Microbiology and Antimicrobials, 8(8), 1-6. https://doi.org/10.1186/1476-0711-8-8 DOI: https://doi.org/10.1186/1476-0711-8-8
Mieres-Castro, D., Ahmar, S., Shabbir, R., y Mora-Poblete, F. 2021. Antiviral activities of eucalyptus essential oils: their effectiveness as therapeutic targets against human viruses. Pharmaceuticals, 14(12), 1210. https://doi.org/10.3390/ph14121210 DOI: https://doi.org/10.3390/ph14121210
Moreira-Marrero, L. 2019. [Tesina para obtener el grado de Licenciada en Ciencias Biológicas]. Universidad de la República de Uruguay. Disponible en https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/26599/1/uy24-19405.pdf
Mori, K., Obossou, E. K., Suwa, S., Miura, S., Oh, S., Jinbo, M., Ishibashi, Y., Hosono, T., Toda, T., Tomobe, K., Shinozuka, T., y Nakajo, S. 2016. Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitory effect of Cymbopogon Nardus essential oil. International Journal of Advanced Research in Botany, 2(1), 7-13. http://dx.doi.org/10.20431/2455-4316.0201002 DOI: https://doi.org/10.20431/2455-4316.0201002
Mushegian, A.R. 2020. Are there 1031 virus particles on Earth, or more, or fewer? Journal of Bacteriology, 202(9), 1-5. https://doi.org/10 .1128/JB.00052-20 DOI: https://doi.org/10.1128/JB.00052-20
Murata, T., Sugimoto, A., Inagaki, T., Yanagi, Y., Watanabe, T., Sato, Y., y Kimura, H. 2021. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses, 13(2344), 1-20. https://doi.org/10.3390/v13122344 DOI: https://doi.org/10.3390/v13122344
Nawaz, N., Wen, S., Wang, F., Nawaz, S., Raza, J., Iftikhar, M., y Usman, M. 2022. Lysozyme and its application as antibacterial agent in food industry. Molecules, 27(6305), 1-18. https://doi.org/10.3390/molecules27196305 DOI: https://doi.org/10.3390/molecules27196305
Nguyen, A. V., y Soulika, A. M. 2019. The dynamics of the skin’s immune system. International Journal Molecular Sciences, 20(8), 1811. https://doi.org/10.3390/ijms20081811 DOI: https://doi.org/10.3390/ijms20081811
NLM (National Library of Medicine). (2022, mayo 25). Viral Structural Proteins. Disponible en https://www.ncbi.nlm.nih.gov/mesh?term=%22Viral+Structural+Proteins%22%5BMeSH+Terms%5D&cmd=DetailsSearch
Nogueira Sobrinho, A. C., de Morais, S. M., Machado Marinho, M., Vasconcelos de Souza, N., y Malta Lima, D. 2021. Antiviral activity on the Zika virus and larvicidal activity on the Aedes spp. of Lippia alba essential oil and -caryophyllene. Industrial Crops & Products, 162, 113281. https://doi.org/10.1016/j.indcrop.2021.113281 DOI: https://doi.org/10.1016/j.indcrop.2021.113281
OMS (Organización Mundial de la Salud). (2021, agosto 30). Vacunas e inmunización: ¿Qué es la vacunación?. Disponible en https://www.who.int/news-room/questions-and-answers/item/vaccines-and-immunization-what-is-vaccination
OMS (Organización Mundial de la Salud). (2023, diciembre 31). Tablero de la OMS sobre el coronavirus (COVID-19). Disponible en https://covid19.who.int
OMS (Organización Mundial de la Salud). (2023, enero 14). Enfermedad por ebolavirus Sudán-Uganda. Disponible en https://www.who.int/es/emergencies/disease-outbreak-news/item/2023-DON433
OMS (Organización Mundial de la Salud). (2023, julio 23). La OMS presenta datos científicos recientes y nuevas orientaciones sobre la supresión del VIH en la IAS 2023. Disponible en https://www.who.int/es/news/item/23-07-2023-new-who-guidance-on-hiv-viral-suppression-and-scientific-updates-released-at-ias-2023
ONUSIDA (Programa Conjunto de las Naciones Unidas sobre el VIH/SIDA). 2023. Últimas estadísticas sobre el estado de la epidemia de sida. Disponible en https://www.unaids.org/es/resources/fact-sheet
Ostrycharz, E., y Hukowska-Szematowicz, B. 2022. New insights into the role of the complements system in human viral diseases. Biomolecules, 12(2), 226. https://doi.org/10.3390/biom12020226 DOI: https://doi.org/10.3390/biom12020226
Parvez, M.K. 2020. Geometric architecture of viruses. World Journal of Virology, 9(2), 5-18. https://doi.org/10.5501/wjv.v9.i2.5 DOI: https://doi.org/10.5501/wjv.v9.i2.5
Pedan, H., Janosova, V., Hajtman, A., y Calkovsky, V. 2020. Non-reflex defense mechanisms of upper airway mucosa: possible clinical application. Physiological research, 69(Suppl. 1), S55-S67. https://doi.org/10.33549/physiolres.934404 DOI: https://doi.org/10.33549/physiolres.934404
Reichling, J. 2021. Antiviral and virucidal properties of essential oils and isolated compounds-a scientific approach. Planta Medica, 88, 587-603. https://doi.org/ 10.1055/a-1382-2898 DOI: https://doi.org/10.1055/a-1382-2898
Rheinemann, L., y Sundquist, W. I. 2021. Virus Budding. Encyclopedia of Virology, 519–528. https://doi.org/10.1016/B978-0-12-814515-9.00023-0 DOI: https://doi.org/10.1016/B978-0-12-814515-9.00023-0
Ribas Pilau, M., Hartz Alves, S., Weiblen, R., Arenhart, S. Cueto, A. P., y Lovato, L. T. 2011. Antiviral activity of the Lippia graveolens (mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Brazilian Journal of Microbiology, 42: 1616-1624. https://doi.org/10.1590/S1517-838220110004000049 DOI: https://doi.org/10.1590/S1517-83822011000400049
Rosowski, E. E. 2020. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Disease Models & Mechanisms, 13(1). https://doi:10.1242/dmm.041889 DOI: https://doi.org/10.1242/dmm.041889
Sanchez, L.F. 2022. Fitoquímica. Editorial de la Facultad de Estudios Superiores Zaragoza.
Saul, R. S., McCausland, C., y Taylor, B. N. 2022. Histology, T-Cell Lymphocyte. In StatPearls. Treasure Island (FL): StatPearls Publishing. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK535433/
Selvarani, V., y James, H. 2013. The activity of cedar leaf oil vapor against respiratory viruses: practical applications. Journal of Applied Pharmaceutical Science, 3(11), 011-015. https://doi.org/10.7324/JAPS.2013.31103
Serudji, J. 2022. Rubella infection in pregnancy. Journal of Midwifery, 7(1), 18-23. https://doi.org/10.25077/jom.7.1.16-23.2022 DOI: https://doi.org/10.25077/jom.7.1.16-23.2022
Simón, D., Cristina, J., y Musto, H. 2021. Nucleotide composition and codon usage across viruses and their respective hosts. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.646300 DOI: https://doi.org/10.3389/fmicb.2021.646300
Singh, I.R. y Pulikkal, A.K. 2022. Preparation, stability and biological activity of essential oil-based nano emulsions: a comprehensive review. OpenNano, 100066. https://doi.org/10.1016/j.onano.2022.100066 DOI: https://doi.org/10.1016/j.onano.2022.100066
Toujani, M. M., Ritta, M., Civra, A., Genovese, S., Epifano, F., Ghram, A., Lembo, D., y Donalisio, M. 2018. Inhibition of HSV-2 infection by pure compounds from Thymus capitatus extract in vitro. Phytotherapy Research, 32(8), 1555.1563. https://doi.org/10.1002/ptr.6084 DOI: https://doi.org/10.1002/ptr.6084
van Helvoort, T., y Sankaran, N. 2019. How seeing became knowing: the role of the electron microscope in shaping the modern definition of viruses. Journal of the History of Biology, 52(1), 125–160. https://doi.org/10.1007/s10739-018-9530-2 DOI: https://doi.org/10.1007/s10739-018-9530-2
Wani, A. R., Yadav, K., Khursheed, A., y Rather, M. A. 2020. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microbial Pathogenesis, 152, 104620. https://doi.org/10.1016/j.micpath.2020.104620 DOI: https://doi.org/10.1016/j.micpath.2020.104620
Wu, Z., Zhang, Y., Xu, X., Ahmed, T., Yang, Y., Loh, B., Leptihn, S., Yan, C., Chen, J., y Li, B. 2021. The holin-endolysin lysis system of the OP2-Like phage X2 infecting Xanthomonas oryzae pv. Oryzae. Viruses, 13(1949), 1-19. https://doi.org/10.3390/v13101949 DOI: https://doi.org/10.3390/v13101949
Zareifopoulos, N., Lagadinou, M., Karela, A., Kyriakopoulou, O., y Velissaris, D. 2020. Neuropsychiatric effects of antiviral drugs. Cureus 12(8), e9536. https://doi.org/10.7759/cureus.9536 DOI: https://doi.org/10.7759/cureus.9536
Zhang, Y., Xiao-Yan, L., Bing-Sha, Z., Li-Na, R., Yan-Peng, L., Jin-Wen, T., Di, L., Yong, L., Li-Thing, L., Zi-Xue, L., Qin, M., y Mei-Lan, M. 2022. In vivo antiviral effect of plant essential oils against avian infectious bronchitis virus. Veterinary Research, 18 (90), 1-13. https://doi.org/10.1186/s12917-022-03183-x DOI: https://doi.org/10.1186/s12917-022-03183-x
