Tecnología Satelital y Manglares:
Una Alianza para Mitigar el Calentamiento Global
DOI:
https://doi.org/10.29105/bys8.15-162Keywords:
Mangrove, Carbon stores, Climate change mitigation, Remote sensingAbstract
Mangroves in tropical and subtropical coastal areas are critical ecosystems that provide vital environmental services, such as coastal protection and biodiversity conservation. They play a crucial role in mitigating climate change by storing significant amounts of carbon in their biomass and soil. However, mangroves are highly vulnerable to deforestation, urbanization, and other land-use changes, which release stored carbon and contribute to global warming. Remote sensing technologies, such as those offered by platforms like Landsat and Sentinel, are essential for monitoring these ecosystems. These platforms use multispectral sensors that capture different electromagnetic spectrum wavelengths, enabling biomass estimation and detection of changes in mangrove extent. Tools like the Normalized Difference Vegetation Index (NDVI) and LIDAR provide detailed information on canopy structure and density, which are key for calculating carbon stocks. To enhance the accuracy of biomass estimates, it is necessary to complement remotely sensed data with field measurements. Combining both methodologies strengthens mangrove management and conservation efforts, contributing significantly to global strategies for mitigating climate change.
Downloads
References
Agráz-Hernández, C.M., R. Noriega-Trejo, J. López-Portillo, F.J. Flores-Verdugo, J.J. Jiménez-Zacarías. 2006. Guía de campo. Identificación de los manglares en México. Universidad Autónoma de Campeche, Campeche, México, 45 pp.
Aguilar, R.N. 2015. Percepción remota como herramienta de competitividad de la agricultura. Revista mexicana de ciencias agrícolas. 6(2): 399-405. DOI: https://doi.org/10.29312/remexca.v6i2.726
CONANP (Comisión Nacional de Áreas Naturales Protegidas). 2017. Importancia del carbono azul. En: https://www.gob.mx/conanp/documentos/la-importancia-del-carbono-azul (Consultado el 10 de enero de 2024).
Davidson, N.C. y C.M. Finlayson. 2019. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Marine and Freshwater Research. 70(8): 1195-1200. DOI: https://doi.org/10.1071/MF19010
Donato, D., J.B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, M. Kannien. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience. 4: 293-297. https://doi.org/10.1038/ngeo1123 DOI: https://doi.org/10.1038/ngeo1123
Edusat. 2024. Qué es la teledetección. En: https://www.edu-sat.com/teledeteccion/?lang=es (Consultado el 10 de enero de 2024).
FAO (Food and Agriculture Organization). 2016. Climate Change and Food Security: Risks and Responses. FAO. 122 pp. http://www.fao.org/3/a-i5188e.pdf
Hamilton, S.E. y D.A. Friess. 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change. 8(3): 240-244. DOI: https://doi.org/10.1038/s41558-018-0090-4
IPCC (Intergovernmental Panel on Climate Change). 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, Nueva York, 2006.
NASA (National Aeronautics and Space Administration) Climate Change and Global Warming Portal. 2024. Global Climate Change: Effects of Global Warming. NASA’s. En: https://climate.nasa.gov/effects (consultado el 08/11/2024).
NOAA (National Oceanic and Atmospheric Administration) Global Monitoring Laboratory. 2024. Trends in atmospheric carbon dioxide. En: https://gml.noaa.gov/ccgg/trends/ (consultado el 08/11/2024).
Palmer, M. W., Earls, P. G., Hoagland, B. W., White, P. S., & Wohlgemuth, T. (2002). Quantitative tools for perfecting species lists. Environmetrics, 13(2), 121–137. DOI: https://doi.org/10.1002/env.516
Pechanec, V., F. Stržínek, J. Purkyt, L. Štěrbová, P. Cudlín. 2017. Carbon stock in forest aboveground biomass - comparison based on Landsat data. Central European Forestry Journal. 63: 126-132. http://doi.org/10.1515/forj-2017-0014 DOI: https://doi.org/10.1515/forj-2017-0014
Pham, T.D., N. Yokoya, D.T. Bui, K. Yoshino, D.A. Friess. 2019. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing. 11(3): 230 https://doi.org/10.3390/rs11030230 DOI: https://doi.org/10.3390/rs11030230
Rodríguez-Zúñiga, M.T., C. Troche-Souza, A.D. Vázquez-Lule, J.D. Márquez-Mendoza, B. Vázquez-Balderas, L. Valderrama-Landeros, S. Velázquez-Salazar, M.I. Cruz-López, R. Ressl, A. Uribe-Martínez, S. Cerdeira-Estrada, J. Acosta-Velázquez, J. Díaz-Gallegos, R. Jiménez-Rosenberg, L. Fueyo-Mac Donald, C. Galindo-Leal. 2013. Manglares de México: extensión, distribución y monitoreo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México D.F. 128 pp. DOI: https://doi.org/10.5962/bhl.title.111178
Rosete, F. y G. Bocco. 2003. Los sistemas de información geográfica y la percepción remota. Herramientas integradas para los planes de manejo en comunidades forestales. Gaceta ecológica. 68: 43-54.
Russi, D., P. ten Brink, A. Farmer, T. Badura, D. Coates, J. Förster, R. Kumar, N. Davidson. 2013. The economics of ecosystems and biodiversity for water and wetlands. IEEP, London and Brussels, 78, 118p.
SIMAR (Sistema de Información y Análisis Marino Costero). 2024. Carbono azul. En: https://simar.conabio.gob.mx/carbono_azul/ (Consultado el 12 de enero de 2024).
Spalding, M., M. Kainuma, L. Collins. 2010. World Atlas of Mangroves (version 3.1). A collaborative project of ITTO, ISME, FAO, UNEP-WCMC, UNESCO-MAB, UNU-INWEH, and TNC. Earthscan, London. 319 pp. https://doi.org/10.34892/w2ew-m835.
Velázquez-Salazar, S., M.T. Rodríguez-Zúñiga, J.A. Alcántara-Maya, E. Villeda-Chávez, L. Valderrama-Landeros, C. Troche-Souza, B. Vázquez-Balderas, I. Pérez-Espinosa, M.I. Cruz-López, R. Ressl, D.V.G. De la Borbollaagr, O. Paz, V. Aguilar-Sierra, F. Hruby, J.H. Muñoa-Coutiño. 2021. Manglares de México. Actualización y análisis de los datos 2020. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México CDMX. 168 pp.
Zhu, Z., M.A. Wulder, D.P. Roy, C.E. Woodcock, M.C. Hansen, V.C. Radelo, T.A. Scambos. 2019. Benefits of the free and open Landsat data policy. Remote Sensing of Environment. 224: 382-385. http://doi.org/10.1016/j.rse.2019.02.016 DOI: https://doi.org/10.1016/j.rse.2019.02.016
