Microbiomas:
la influencia invisible en la evolución y conservación de los organismos
DOI:
https://doi.org/10.29105/bys8.16-189Keywords:
Microbiome, evolution, host-microbiome, adaptation, conservationAbstract
Microorganisms are found on almost all terrestrial surfaces and have influenced the development and evolution of multicellular organisms thanks to complex interaction networks. They can modify the host’s gene expression, alter nutrient availability in the environment, or facilitate adaptation to extreme diets. The microbial load within organisms is so high that it forces us to question what it truly means to be an individual and reconsider how we coexist with the guests in our bodies. To understand the contribution of the microbiota to host evolution, it’s essential not only to observe variations in microbial diversity but also to comprehend the language in which cells interact. Over the last decade, studies examining metabolite exchange between the microbiome and its hosts have exponentially increased. Various ways to harness this communication have been proposed. For instance, in the case of the human gut microbiota, which has been linked to chronic diseases and postnatal development, novel approaches for modulating the microbiome include probiotic and prebiotic supplementation, targeted therapies like CRISPR-Cas, and even radical methods such as complete bacterial community transplants. These innovative applications have also extended to the area of ecosystems conservation where attempts are made to enhance organism survival through intestinal and environmental microbiome management. However, significant questions remain unresolved in microbiome research and application. Publicly available genomic information is limited, as is our ability to identify each species’ contributions to the community and understand the ecological processes involved. In this article we will explore the effects of microbial activity over the host fitness and the relevance of microbiome conservation for sustainable development.
Downloads
References
Barathe, P., Kaur, K., Reddy, S., Shriram, V., & Kumar, V. (2024). Antibiotic pollution and associated antimicrobial resistance in the environment. Journal of Hazardous Materials Letters, 100105. https://doi.org/10.1016/j.hazl.2024.100105 DOI: https://doi.org/10.1016/j.hazl.2024.100105
Belkaid, Y., & Hand, T. (2014). Role of the microbiota in immunity and inflammation. Cell, 157, 121–141. https://doi.org/10.1016/j.cell.2014.03.011 DOI: https://doi.org/10.1016/j.cell.2014.03.011
Bergelson, J., Mittelstrass, J., & Horton, M. W. (2019). Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 9(1), 24. https://doi.org/10.1038/s41598-018-37208-z DOI: https://doi.org/10.1038/s41598-018-37208-z
Bielik, V., & Kolisek, M. (2021). Bioaccessibility and bioavailability of minerals in relation to a healthy gut microbiome. International Journal of Molecular Sciences, 22(13), 6803. https://doi.org/10.3390/ijms22136803 DOI: https://doi.org/10.3390/ijms22136803
CELSYS, Inc. (2025). CLIP STUDIO PAINT (versión 2.3.4) [Software]. https://www.clipstudio.net/
Chen, S., Luo, S., & Yan, C. (2021). Gut microbiota implications for health and welfare in farm animals: A review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093 DOI: https://doi.org/10.3390/ani12010093
Chen, Y., Tian, P., Wang, Z., Pan, R., Shang, K., Wang, G., ... & Chen, W. (2022). Indole acetic acid exerts anti-depressive effects on an animal model of chronic mild stress. Nutrients, 14(23), 5019. https://doi.org/10.3390/nu14235019 DOI: https://doi.org/10.3390/nu14235019
Chu, D. M., et al. (2017). Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nature Medicine, 23(3), 314–326. https://doi.org/10.1038/nm.4272 DOI: https://doi.org/10.1038/nm.4272
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., ... & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. DOI: https://doi.org/10.1038/nature12820
Davidson, G. L., Raulo, A., & Knowles, S. C. (2020). Identifying microbiome-mediated behaviour in wild vertebrates. Trends in Ecology & Evolution, 35(11), 972–980. https://doi.org/10.1016/j.tree.2020.06.014 DOI: https://doi.org/10.1016/j.tree.2020.06.014
Deng, S., Caddell, D. F., Xu, G., Dahlen, L., Washington, L., Yang, J., & Coleman-Derr, D. (2021). Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. The ISME Journal, 15(11), 3181–3194. https://doi.org/10.1038/s41396-021-00993-z DOI: https://doi.org/10.1038/s41396-021-00993-z
Diwan, A. D., Harke, S. N., & Panche, A. N. (2023). Host-microbiome interaction in fish and shellfish: An overview. Fish and Shellfish Immunology Reports, 4, 100091. https://doi.org/10.1016/j.fsirep.2023.100091 DOI: https://doi.org/10.1016/j.fsirep.2023.100091
Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., & Blaser, M. J. (2019). Role of the microbiome in human development. Gut, 68(6), 1108–1114. https://doi.org/10.1136/gutjnl-2018-317503 DOI: https://doi.org/10.1136/gutjnl-2018-317503
Fujisaka, S., Watanabe, Y., & Tobe, K. (2023). The gut microbiome: a core regulator of metabolism. Journal of Endocrinology, 256(3). https://doi.org/10.1530/JOE-22-0111 DOI: https://doi.org/10.1530/JOE-22-0111
Gaulke, C. A., Arnold, H. K., Kembel, S. W., O’Dwyer, J. P., & Sharpton, T. J. (2017). Ecophylogenetics reveals the evolutionary associations between mammals and their gut microbiota. bioRxiv, 182212. https://doi.org/10.1101/182212 DOI: https://doi.org/10.1101/182212
González, R., & Elena, S. F. (2021). The interplay between the host microbiome and pathogenic viral infections. MBio, 12(6), e02496-21. https://doi.org/10.1128/mBio.02496-21 DOI: https://doi.org/10.1128/mBio.02496-21
Graham, D. B., & Xavier, R. J. (2023). Conditioning of the immune system by the microbiome. Trends in Immunology, 44(7), 499–511. https://doi.org/10.1016/j.it.2023.05.002 DOI: https://doi.org/10.1016/j.it.2023.05.002
Grieneisen, L., Muehlbauer, A. L., & Blekhman, R. (2020). Microbial control of host gene regulation and the evolution of host–microbiome interactions in primates. Philosophical Transactions of the Royal Society B, 375(1808), 20190598. https://doi.org/10.1098/rstb.2019.0598 DOI: https://doi.org/10.1098/rstb.2019.0598
Hartman, K., et al. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1), 65. https://doi.org/10.1186/s40793-023-00521-w DOI: https://doi.org/10.1186/s40793-023-00521-w
Havrilla, C., Leslie, A. D., Di Biase, J. L., & Barger, N. N. (2020). Biocrusts are associated with increased plant biomass and nutrition at seedling stage independently of root-associated fungal colonization. Plant and Soil, 446, 331–342. https://doi.org/10.1007/s11104-019-04306-4 DOI: https://doi.org/10.1007/s11104-019-04306-4
Henry, L. P., Bruijning, M., Forsberg, S. K., & Ayroles, J. F. (2019). Can the microbiome influence host evolutionary trajectories? bioRxiv, 700237. https://www.biorxiv.org/content/10.1101/700237v1.abstract DOI: https://doi.org/10.1101/700237
Hernandez, C. J., & Moeller, A. H. (2022). The microbiome: A heritable contributor to bone morphology? Seminars in Cell & Developmental Biology, 123, 82–87. https://doi.org/10.1016/j.semcdb.2022.03.008 DOI: https://doi.org/10.1016/j.semcdb.2021.06.022
Hirt, H. (2020). Healthy soils for healthy plants for healthy humans: How beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. EMBO Reports, 21(8), e51069. https://doi.org/10.15252/embr.202051069 DOI: https://doi.org/10.15252/embr.202051069
Hou, D., et al. (2020). Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria. Journal of Hazardous Materials, 396, 122631. DOI: https://doi.org/10.1016/j.jhazmat.2020.122631
Ironstone, P. (2019). Me, myself, and the multitude: Microbiopolitics of the human microbiome. European Journal of Social Theory, 22(3), 325–341. https://doi.org/10.1177/1368431018811330 DOI: https://doi.org/10.1177/1368431018811330
Jin Song, S., et al. (2019). Engineering the microbiome for animal health and conservation. Experimental Biology and Medicine, 244(6), 494–504. https://doi.org/10.1177/1535370219830075 DOI: https://doi.org/10.1177/1535370219830075
Koskella, B., & Bergelson, J. (2020). The study of host–microbiome (co) evolution across levels of selection. Philosophical Transactions of the Royal Society B, 375(1808), 20190604. https://doi.org/10.1098/rstb.2019.0604
Lee, S., et al. (2022). Transmission of antibiotic resistance at the wildlife-livestock interface. Communications Biology, 5(1), 585. https://doi.org/10.1038/s42003-022-03520-8 DOI: https://doi.org/10.1038/s42003-022-03520-8
Lennon, J. T., & Locey, K. J. (2020). More support for Earth’s massive microbiome. Biology Direct, 15(1), 1–6. https://doi.org/10.1186/s13062-020-00261-8 DOI: https://doi.org/10.1186/s13062-020-00261-8
Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1(1), 1–18. DOI: https://doi.org/10.1146/annurev.es.01.110170.000245
Li, W., et al. (2023). Successional changes of microbial communities and host-microbiota interactions contribute to dietary adaptation in allodiploid hybrid fish. Microbial Ecology, 85(4), 1190–1201. https://doi.org/10.1007/s00248-022-01993-y DOI: https://doi.org/10.1007/s00248-022-01993-y
Lin, D., & Medeiros, D. M. (2023). The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutrition Research. https://doi.org/10.1016/j.nutres.2023.02.007 DOI: https://doi.org/10.1016/j.nutres.2023.02.007
Liu, W., et al. (2021). Exposure to soil environments during earlier life stages is distinguishable in the gut microbiome of adult mice. Gut Microbes, 13(1), 1830699. https://doi.org/10.1080/19490976.2020.1830699 DOI: https://doi.org/10.1080/19490976.2020.1830699
Lloréns-Rico, V., et al. (2021). Bacterial antisense RNAs are mainly the product of transcriptional noise. Science Advances, 7(14), eabc1306. https://doi.org/10.1126/sciadv.abc1306
Macia, L., et al. (2019). Metabolite-sensing G protein-coupled receptors—facilitators of diet-related immune regulation. Annual Review of Immunology, 37, 371–400. https://doi.org/10.1146/annurev-immunol-042718-041313
Maghini, D. G., et al. (2021). The gut microbiome modulates antibiotic resistance gene reservoir and homeostasis in the respiratory tract. Cell Host & Microbe, 29(4), 555–567.e5. https://doi.org/10.1016/j.chom.2021.02.002 DOI: https://doi.org/10.1016/j.chom.2021.02.002
Malmuthuge, N., & Guan, L. L. (2017). Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. Journal of Dairy Science, 100(7), 5996–6005. https://doi.org/10.3168/jds.2016-12239 DOI: https://doi.org/10.3168/jds.2016-12239
Martínez-Porchas, M., & Vargas-Albores, F. (2017). Microbial metagenomics in aquaculture: A potential tool for a deeper insight into the activity. Reviews in Aquaculture, 9(1), 42–56. https://doi.org/10.1111/raq.12098 DOI: https://doi.org/10.1111/raq.12102
Meyer, K. M., et al. (2018). Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 6(1), 1–22. https://doi.org/10.1186/s40168-018-0605-0
Mills, R. H., et al. (2018). Microbiota–host relationships in the pathogenesis and treatment of inflammatory bowel disease. Current Opinion in Gastroenterology, 34(4), 246–252. https://doi.org/10.1097/MOG.0000000000000441 DOI: https://doi.org/10.1097/MOG.0000000000000441
Moya, A., & Ferrer, M. (2016). Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends in Microbiology, 24(5), 402–413. https://doi.org/10.1016/j.tim.2016.02.002 DOI: https://doi.org/10.1016/j.tim.2016.02.002
Mueller, U. G., & Sachs, J. L. (2015). Engineering microbiomes to improve plant and animal health. Trends in Microbiology, 23(10), 606–617. https://doi.org/10.1016/j.tim.2015.07.009 DOI: https://doi.org/10.1016/j.tim.2015.07.009
Nugent, S. G., et al. (2001). Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut, 48(4), 571–577. https://doi.org/10.1136/gut.48.4.571 DOI: https://doi.org/10.1136/gut.48.4.571
Paredes-Sabja, D., et al. (2021). The impact of antibiotics on the human gut microbiome and the rise of antimicrobial resistance: The role of probiotics in reducing damage. Nutrients, 13(10), 3445. https://doi.org/10.3390/nu13103445 DOI: https://doi.org/10.3390/nu13103445
Rosenberg, E., & Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants: the hologenome concept. MBio, 7(2), e01395–15. https://doi.org/10.1128/mBio.01395-15 DOI: https://doi.org/10.1128/mBio.01395-15
Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9, 313–323. https://doi.org/10.1038/nri2515 DOI: https://doi.org/10.1038/nri2515
Schneider, J. G., et al. (2022). Gut microbiome and obesity: From pathogenesis to therapy. Metabolism: Clinical and Experimental, 129, 155173. https://doi.org/10.1016/j.metabol.2022.155173
Sekirov, I., et al. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009 DOI: https://doi.org/10.1152/physrev.00045.2009
Shade, A., & Handelsman, J. (2012). Beyond the Venn diagram: The hunt for a core microbiome. Environmental Microbiology, 14(1), 4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x DOI: https://doi.org/10.1111/j.1462-2920.2011.02585.x
Smits, S. A., et al. (2017). Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science, 357(6353), 802–806. https://doi.org/10.1126/science.aan4834 DOI: https://doi.org/10.1126/science.aan4834
Sonnenburg, J. L., & Bäckhed, F. (2016). Diet–microbiota interactions as moderators of human metabolism. Nature, 535(7610), 56–64. https://doi.org/10.1038/nature18846 DOI: https://doi.org/10.1038/nature18846
Turnbaugh, P. J., et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414 DOI: https://doi.org/10.1038/nature05414
Turnbaugh, P. J., et al. (2007). The human microbiome project. Nature, 449(7164), 804–810. https://doi.org/10.1038/nature06244 DOI: https://doi.org/10.1038/nature06244
Van Nood, E., et al. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. New England Journal of Medicine, 368(5), 407–415. https://doi.org/10.1056/NEJMoa1205037 DOI: https://doi.org/10.1056/NEJMoa1205037
Walter, J., & Ley, R. (2011). The human gut microbiome: Ecology and recent evolutionary changes. Annual Review of Microbiology, 65, 411–429. https://doi.org/10.1146/annurev-micro-090110-102830 DOI: https://doi.org/10.1146/annurev-micro-090110-102830
Zhang, J., et al. (2019). Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. Journal of Neuroinflammation, 16(1), 1–14. https://doi.org/10.1186/s12974-019-1408-6 DOI: https://doi.org/10.1186/s12974-019-1434-3
Zhou, X., et al. (2020). The cumulative antibiotic resistance and pollution of soil microbiota in different land uses. Science of the Total Environment, 712, 136492. https://doi.org/10.1016/j.scitotenv.2020.136492 DOI: https://doi.org/10.1016/j.scitotenv.2019.136492
