La Nanotecnología en las Ciencias Biológicas
DOI:
https://doi.org/10.29105/bys1.1-65Keywords:
nanotechnology, nanomaterials, nanomedicineAbstract
Nanotechnology has accompanied man since ancient times, allowing the development of innovative products that have improved the quality of man life. Currently, this is one of the fastest growing areas worldwide in terms of research and technological applications. In this context, the areas of Biological Sciences such as agriculture, food, environment and medicine, among others, are disciplines in which nanotechnological advances have had a great impact. The developed products include nanomaterials, release nanosystems, nanofillers, nanorobots, electronic nanodevices, carbon nanotubes and metallic nanoparticles, among others. The present work is focused on products of nanotechnology and their applications in the biological sciences, highlighting the importance and the advance that they give to the life of man.
Downloads
References
Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., Songtipya, P. 2016. Physico-mechanical characterization and antimicrobial properties of fish protein isolate/fish skin gelatin-zinc oxide (ZnO) nanocomposite films. Food and Bioprocess Technology, 9(1), 101–112. https://doi.org/10.1007/s11947-015-1602-0 DOI: https://doi.org/10.1007/s11947-015-1602-0
Armendáriz Barragán, B. 2012. Preparación y evaluación in vitro de la actividad antituberculosa de nanopartículas biodegradables cargadas con clofazimina. Tesis Licenciatura, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León. 61pp.
Armendáriz-Barragán, B., Álvarez-Román, R., Galindo-Rodríguez, S. A. 2016. Formulación de productos naturales en sistemas de liberación micro- y nanoparticulados. 411-436pp. En: Rivas-Morales, C., Oranday-Cárdenas, M. A.& Verde-Star, M. J. (Eds.)Investigación en platas de importancia médica. Omnia Science. Barcelona, España. http://omniascience.com/monographs/index.php/monograficos/article/view/338 DOI: https://doi.org/10.3926/oms.338
Banoee, M., Seif, S., Nazari, Z. E., Jafari-Fesharaki, P., Shahverdi, H. R., Moballegh, A., Shahverdi, A. R. 2010. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 93(2), 557–561. https://doi.org/10.1002/jbm.b.31615 DOI: https://doi.org/10.1002/jbm.b.31615
Bhushani, J. A., Karthik, P., Anandharamakrishnan, C. 2016. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocolloids, 56, 372–382. https://doi.org/10.1016/j.foodhyd.2015.12.035 DOI: https://doi.org/10.1016/j.foodhyd.2015.12.035
Boisseau, P., Loubaton, B. 2011. Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12(7), 620–636. https://doi.org/10.1016/j.crhy.2011.06.001 DOI: https://doi.org/10.1016/j.crhy.2011.06.001
Cárdenas, G., Díaz, V. J., Meléndrez, M. F., Cruzat, C. C., García Cancino, A. 2009. Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polymer Bulletin, 62(4), 511–524. https://doi.org/10.1007/s00289-008-0031-x DOI: https://doi.org/10.1007/s00289-008-0031-x
Cavazos Rodríguez, M.R. 2011. Encapsulación de aceites esenciales en nanopartículas poliméricas para su aplicación dermatológica. Tesis Maestría, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León.
Celgene Corporation. 2015. ABRAXANE® Patient & Caregiver Website. from http://www.abraxane.com/ (consultado el 05/09/2017).
Cui, Y., Wei, Q., Park, H., Lieber, C. M. 2001. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293(5533), 1289–1292. https://doi.org/10.1126/science.1062711 DOI: https://doi.org/10.1126/science.1062711
De Silva, R. T., Pasbakhsh, P., Lee, S. M., Kit, A. Y. 2015. ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science, 111, 10–20. https://doi.org/10.1016/j.clay.2015.03.024 DOI: https://doi.org/10.1016/j.clay.2015.03.024
Dhapte, V., Gaikwad, N., More, P. V., Banerjee, S., Dhapte, V. V., Kadam, S., Khanna, P. K. 2015. Transparent ZnO/polycarbonate nanocomposite for food packaging application. Nanocomposites, 1(2), 106–112. https://doi.org/10.1179/2055033215Y.0000000004 DOI: https://doi.org/10.1179/2055033215Y.0000000004
Diallo, M. S., Balogh, L., Shafagati, A., Johnson, Goddard, W. A., Tomalia, D. A. 1999. Poly(amidoamine) dendrimers: A new class of high capacity chelating agents for Cu(II) ions. Environmental Science & Technology, 33(5), 820–824. https://doi.org/10.1021/es980521a DOI: https://doi.org/10.1021/es980521a
Diaz Zarazua, L. J. 2016. Formulación de nanopartículas con clorhexidina para su potencial uso odontólogico. Tesis Licenciatura, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León. 33pp.
ECCO. 2012. First trial in humans of “minicells”: a completely new way of delivering anti-cancer drugs. http://www.ecco-org.eu/Global/News/ENA/ENA-2012-PR/2012/11/9_11-First-trial-in-humans-of-minicells (consultado el 05/092017).
Elvidge, S. 2012. Bacterial “minicells” deliver cancer drugs straight to the target. http://www.fiercepharma.com/r-d/bacterial-minicells-deliver-cancer-drugs-straight-to-target (consultado el 05/09/2017).
Figueroa Espinoza, A. 2014. Incorporación de extractos de semillas de Anona muricara L. en nanopartículas poliméricas para el uso en el control de Aedes aegypti L. Tesis Licenciatura, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León.
Fouda, M. M. G., Abdel-Halim, E. S., Al-Deyab, S. S. 2013. Antibacterial modification of cotton using nanotechnology. Carbohydrate Polymers, 92(2), 943–954. https://doi.org/10.1016/j.carbpol.2012.09.074 DOI: https://doi.org/10.1016/j.carbpol.2012.09.074
Freitas, R. A. 2005. Nanotechnology, nanomedicine and nanosurgery. International Journal of Surgery, 3(4), 243–246. https://doi.org/10.1016/j.ijsu.2005.10.007 DOI: https://doi.org/10.1016/j.ijsu.2005.10.007
Garde, D. 2012. “Chemo bomb” nanotechnology effective in halting tumors. http://www.fiercepharma.com/r-d/chemo-bomb-nanotechnology-effective-halting-tumors (consultado 05/09/2019).
Geohumus GmbH. 2017. http://www.geohumus.com/en/ (consultado 05/09/2017).
Gobin, A. M., O’Neal, D. P., Watkins, D. M., Halas, N. J., Drezek, R. A., West, J. L. 2005. Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers in Surgery and Medicine, 37(2), 123–129. https://doi.org/10.1002/lsm.20206 DOI: https://doi.org/10.1002/lsm.20206
Guerrero Barboza, A. 2017. Encapsulación de coenzima Q10 en nanopartículas poliméricas no biodegradables. Tesis Licenciatura, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León.
Hernández Vela, T. N. 2016. Estudio clínico de la actividad antiplaca de la clorhexidina incorporada en nanopartículas poliméricas. Tesis Maestría, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León.
Jin, T., Sun, D., Su, J. Y., Zhang, H., Sue, H. J. 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. Journal of Food Science, 74(1), M46-52. https://doi.org/10.1111/j.1750-3841.2008.01013.x DOI: https://doi.org/10.1111/j.1750-3841.2008.01013.x
Kamat, P. V., Huehn, R., Nicolaescu, R. 2002. A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. The Journal of Physical Chemistry B, 106(4), 788–794. https://doi.org/10.1021/jp013602t DOI: https://doi.org/10.1021/jp013602t
Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., Dai, H. 2000. Nanotube molecular wires as chemical sensors. Science, 287(5453), 622–625. https://doi.org/10.1126/science.287.5453.622 DOI: https://doi.org/10.1126/science.287.5453.622
Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., Dubois, P. 2009. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports, 63(3), 100–125. https://doi.org/10.1016/j.mser.2008.09.002 DOI: https://doi.org/10.1016/j.mser.2008.09.002
Li, X., Li, W., Jiang, Y., Ding, Y., Yun, J., Tang, Y., Zhang, P. 2011. Effect of nano-ZnO-coated active packaging on quality of fresh-cut “Fuji” apple. International Journal of Food Science & Technology, 46(9), 1947–1955. https://doi.org/10.1111/j.1365-2621.2011.02706.x DOI: https://doi.org/10.1111/j.1365-2621.2011.02706.x
Li, X., Xing, Y., Jiang, Y., Ding, Y., Li, W. 2009. Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. International Journal of Food Science & Technology, 44(11), 2161–2168. https://doi.org/10.1111/j.1365-2621.2009.02055.x DOI: https://doi.org/10.1111/j.1365-2621.2009.02055.x
Lizundia, E., Ruiz-Rubio, L., Vilas, J. L., León, L. M. 2016. Poly(l-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications. Journal of Applied Polymer Science, 133(2), 42426. https://doi.org/10.1002/app.42426 DOI: https://doi.org/10.1002/app.42426
Long, R. Q., Yang, R. T. 2001. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 123(9), 2058–2059. https://doi.org/10.1021/ja003830l DOI: https://doi.org/10.1021/ja003830l
Loo, C., Lin, A., Hirsch, L., Lee, M.-H., Barton, J., Halas, N., Drezek, R. 2004. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment, 3(1), 33–40. https://doi.org/10.1177/153303460400300104 DOI: https://doi.org/10.1177/153303460400300104
Lugo Estrada, L. 2013-En proceso. Desarrollo de sistemas nanopartículados con dos aceites esenciales para el control de Aedes aegypti L. Tesis Doctorado, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León.
Marra, A., Silvestre, C., Duraccio, D., Cimmino, S. 2016. Polylactic acid/zinc oxide biocomposite films for food packaging application. International Journal of Biological Macromolecules, 88, 254–262. https://doi.org/10.1016/j.ijbiomac.2016.03.039 DOI: https://doi.org/10.1016/j.ijbiomac.2016.03.039
McMurray, T. A., Dunlop, P. S. M., Byrne J. A. 2006. The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. Journal of Photochemistry and Photobiologi A: Chemistry, 182, 43–51. https://doi.org/10.1016/j.jphotochem.2006.01.010 DOI: https://doi.org/10.1016/j.jphotochem.2006.01.010
Milani, N., McLaughlin, M. J., Stacey, S. P., Kirby, J. K., Hettiarachchi, G. M., Beak, D. G., Cornelis, G. 2012. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. Journal of Agricultural and Food Chemistry, 60(16), 3991–3998. https://doi.org/10.1021/jf205191y DOI: https://doi.org/10.1021/jf205191y
Nie, S., Xing, Y., Kim, G. J., Simons, J. W. 2007. Nanotechnology applications in cancer. Annual Review of Biomedical Engineering, 9, 257–288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025 DOI: https://doi.org/10.1146/annurev.bioeng.9.060906.152025
Pandey, R., Ahmad, Z. 2011. Nanomedicine and experimental tuberculosis: facts, flaws, and future. Nanomedicine: Nanotechnology, Biology and Medicine, 7(3), 259–272. https://doi.org/10.1016/j.nano.2011.01.009 DOI: https://doi.org/10.1016/j.nano.2011.01.009
Parisi, C., Vigani, M., Rodríguez-Cerezo, E. 2015. Agricultural Nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127. https://doi.org/10.1016/j.nantod.2014.09.009 DOI: https://doi.org/10.1016/j.nantod.2014.09.009
Peiris, P. M., Bauer, L., Toy, R., Tran, E., Pansky, J., Doolittle, E., Karathanasis, E. 2012. Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano, 6(5), 4157–4168. https://doi.org/10.1021/nn300652p DOI: https://doi.org/10.1021/nn300652p
Pereira, A. E. S., Grillo, R., Mello, N. F. S., Rosa, A. H., Fraceto, L. F. 2014. Application of poly(elipson-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the enviroment. J. Hazard. Mater, 268, 207-215. https://doi.org/10.1016/j.jhazmat.2014.01.025 DOI: https://doi.org/10.1016/j.jhazmat.2014.01.025
Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J., Kotov, N. A. 2007. Ultrastrong and stiff layered polymer nanocomposites. Science, 318(5847), 80–83. https://doi.org/10.1126/science.1143176 DOI: https://doi.org/10.1126/science.1143176
Ponder, S. M., Darab, J. G., Mallouk, T. E. 2000. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564–2569. https://doi.org/10.1021/es9911420 DOI: https://doi.org/10.1021/es9911420
Radovic-Moreno, A. F., Lu, T. K., Puscasu, V. A., Yoon, C. J., Langer, R., Farokhzad, O. C. 2012. Surface Charge-Switching Polymeric Nanoparticles for Bacterial Cell Wall-Targeted Delivery of Antibiotics. ACS Nano, 6(5), 4279–4287. https://doi.org/10.1021/nn3008383 DOI: https://doi.org/10.1021/nn3008383
Salas Cedillo, H. I. 2017. Desarrollo de un potencial insecticida nanoparticulado de Schinus molle para el control de Aedes aegypti. Tesis Maestría, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León.
Shankar, S., Teng, X., Li, G., Rhim, J.W. 2015. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271. https://doi.org/10.1016/j.foodhyd.2014.12.001 DOI: https://doi.org/10.1016/j.foodhyd.2014.12.001
Silva Flores, P. G. 2015-En proceso. Desarrollo y evaluación dermatocinética de nanopartículas con aceites esenciales para su aplicación en piel. Tesis Doctorado, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León.
Sivaramakrishnan, S. M., Neelakantan, P. 2014. Nanotechnology in dentistry - What does the future hold in store? Dentistry,4(2), 198https://doi.org/10.4172/2161-1122.1000198 DOI: https://doi.org/10.4172/2161-1122.1000198
Trafton, A. 2012. Target: Drug-resistant bacteria. http://news.mit.edu/2012/antibiotic-nanoparticle-0504 (consultado el 05/09/2017).
Umamaheswaria, G., Sanujaa, S., Arul Johna, V., Kanthb, S. V., Umapathya, M. J. 2015. Preparation, characterization and anti-bacterial activity of zinc oxide-gelatin nanocomposite film for food packaging applications. Polymers & Polymers Composites, 23(3), 199–204. DOI: https://doi.org/10.1177/096739111502300311
University of Waterloo. 2010. Nanotechnology in targeted cancer theraphy. https://uwaterloo.ca/news/news/nanotechnology-in-targeted-cancer-therapy (consultado el 05/09/2017)
US FDA. 2002. Listing of color additives exempt from certification, Tittle 21-Food and drugs code of federal regulations. Retrieved from https://www.ecfr.gov/cgi-bin/text-idx?SID=6ad001edd5b0635d0ebb4bd96ebb7c7a&mc=true&node=se21.1.73_1575&rgn=div8
US FDA. 2015a. Environmental decisions - Memo for food contact notification no. 1569 https://www.fda.gov/Food/IngredientsPackagingLabeling/EnvironmentalDecisions/ucm488455.htm (consultado el 04/09/2017)
US FDA. 2015b. Color additive status list. https://www.fda.gov/forindustry/coloradditives/coloradditiveinventories/ucm106626.htm (consultado el 05/09/2017)
Vamvakaki, V., Chaniotakis, N. A. 2007. Pesticide detection with a liposome-based nano-biosensor. Biosensors & Bioelectronics, 22(12), 2848–2853. https://doi.org/10.1016/j.bios.2006.11.024 DOI: https://doi.org/10.1016/j.bios.2006.11.024
Velázquez Dávila, L. A. 2017. Evaluaciones dermatocinéticas y antimicóticos de productos naturales incorporados en nanopartículas poliméricas biodegradables Tesis Doctorado, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León.
Villegas Ramírez, H. M. 2017. Actividad larvicida de aceites esenciales para el control de Musca domestica L. (Diptera: Muscidae). Tesis Licenciatura, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León.
Wang, Z., Ruan, J., Cui, D. 2009. Advances and prospect of nanotechnology in stem cells. Nanoscale Research Letters, 4(7), 593–605. https://doi.org/10.1007/s11671-009-9292-z DOI: https://doi.org/10.1007/s11671-009-9292-z
Wyss Institute. 2012. Harvard’s Wyss Institute develops novel nanotherapeutic that delivers clot-busting drugs directly to obstructed blood vessels. https://wyss.harvard.edu/harvards-wyss-institute-develops-novel-nanotherapeutic-that-delivers-clot-busting-drugs-directly-to-obstructed-blood-vessels/ (consultado 04/09/2017).
Zambrano-Zaragoza, M. L., Mercado-Silva, E., Del Real L., A., Gutiérrez-Cortez, E., Cornejo-Villegas, M. A., Quintanar-Guerrero, D. 2014. The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “Red Delicious” apples. Innovative Food Science & Emerging Technologies, 22, 188–196. https://doi.org/10.1016/j.ifset.2013.09.008 DOI: https://doi.org/10.1016/j.ifset.2013.09.008
Zhang, W., Wang, C.-B., Lien, H.L. 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40(4), 387–395. https://doi.org/10.1016/S0920-5861(98)00067-4 DOI: https://doi.org/10.1016/S0920-5861(98)00067-4
Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., Lieber, C. M. 2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 23(10), 1294–1301. https://doi.org/10.1038/nbt1138 DOI: https://doi.org/10.1038/nbt1138
Zhou, H., Liu, G., Zhang, J., Sun, N., Duan, M., Yan, Z., Xia, Q. 2014. Novel lipid-free nanoformulation for improving oral bioavailability of Coenzyme Q10. Biomed Research International, 2014, ID 793879, 9pp. https://doi.org/10.1155/2014/793879 DOI: https://doi.org/10.1155/2014/793879