Adaptándose a un medio cambiante:
La importancia del comportamiento animal en estudios de conservación
DOI:
https://doi.org/10.29105/bys3.5-31Palabras clave:
Comportamiento, cambio climático, ecosistemas marinos, cambio conductual, biodiversidad, conservación, plasticidadResumen
En la actualidad, el cambio climático antropogénico representa el mayor desafío para la humanidad. Existen numerosas líneas de evidencia que muestran los impactos negativos que este fenómeno tiene en los sistemas biológicos, tales como cambios en la abundancia, fisiología, distribución y patrones de migración de numerosas especies de fauna. Sin embargo, los cambios en el comportamiento de las especies han sido ignorados por años.
El comportamiento, sin embargo, representa un factor crucial en la adaptación y la supervivencia de los organismos, ya que su modificación posee un significado crítico: una señal de alerta en respuesta a condiciones ambientales. Debido a esto, el estudio del comportamiento representa una herramienta valiosa para predecir y evitar a tiempo declives en las poblaciones de organismos con elevada importancia ecológica y económica. El objetivo general de esta revisión es abrir la puerta a una nueva área conocida como Conducta en la Conservación (Conservation Behavior) en nuestro país. Esta revisión de estudios conductuales realizados presenta casos de estudio, llevados a cabo desde los trópicos hasta el Ártico, de las respuestas en la conducta de diversas especies de fauna ante los cambios ambientales. Ésta, a su vez, refleja la importancia de incorporar estudios de comportamiento en estrategias de conservación para comprender cómo los organismos se enfrentarán a un mundo cambiant
Descargas
Citas
Agin, V., Chichery, R., Dickel, L. y Chichery M. 2006. The “prawn-in-the-tube” procedure in the cuttlefish: Habituation or passive avoidance learning? Learn. Mem. 13(1):97-101. DOI: https://doi.org/10.1101/lm.90106
Barlow, G.W. 1984. Patterns of monogamy among teleost fishes. Arch. Fischwiss. 35: 75–123.
Berger-Tal, O., Blumstein, D., Carroll, S., Fisher, R., Mesnick, S., Owen, M., Saltz, D., & St. Clair, C. y Swaisgood, R. 2015. A systematic survey of the integration of behavior into wildlife conservation and management. Conservation biology: the journal of the Society for Conservation Biology. 30. 10.1111/cobi.12654. DOI: https://doi.org/10.1111/cobi.12654
Bonin, M., C., Boström-Einarsson, L., Munday, P. L. y Jones, G. P. 2015. The Prevalence and Importance of Competition Among Coral Reef Fishes. Annu. Rev. Ecol. Evol. Syst. 46, 169–190. DOI: https://doi.org/10.1146/annurev-ecolsys-112414-054413
Boström-Einarsson L., Bonin M., Munday P. y Jones G. 2018. Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish. Scientific Reports 8, 7795. DOI: https://doi.org/10.1038/s41598-018-26090-4
Caddy, J. y Rodhouse, P. 1998. Cephalopod and Groundfish Landings: Evidence for Ecological Change in Global Fisheries? Reviews in Fish Biology and Fisheries. Vol. 8; Issue 4, pp 431-444. DOI: https://doi.org/10.1023/A:1008807129366
Cahill JA, Green RE, Fulton TL, Stiller M. y Jay F. 2013. Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution. PLoS Genet, 9(3): e1003345; 2013 DOI: 10.1371/journal.pgen.1003345 DOI: https://doi.org/10.1371/journal.pgen.1003345
Close, S., Houssais, M. N. y Herbaut, C. 2015. Regional dependence in the timing of onset of rapid decline in Arctic sea ice concentration. Journal of Geophysical Research: Oceans, 120(12), 8077–8098. DOI: https://doi.org/10.1002/2015JC011187
Cousteau, J. y Diole, P. 1973. Octopus and squid: The soft intelligence. New York, Doubleday.
Diffenbaugh, N. y Field, C. 2013. Changes in Ecologically Critical Terrestrial Climate Conditions. Science Vol. 341, Issue 6145, pp. 486-492. DOI: 10.1126/science.1237123. DOI: https://doi.org/10.1126/science.1237123
Foster, G., Royer, D. y Lunt, D. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications 8; 14845 (2017) doi:10.1038/ncomms14845.
Gormezano L. y Rockwell R. 2013. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay. Ecology and Evolution; Vol 3: Issue 10. DOI: https://doi.org/10.1002/ece3.740
Hauser, D., Laidre, K., Stern, H., Suydam, R. y Richard, P. 2018. Indirect effects of sea ice loss on summer-fall habitat and behaviour for sympatric populations of an Arctic marine predator. Diversity and Distributions; Vol. 24, Issue 6. DOI: https://doi.org/10.1111/ddi.12722
IUCN. 2015. Oceans and Climate Change. Noviembre, 2015. En: https://www.iucn.org/downloads/oceans_and_climate_change_i_issues_brief_cop21_011215.pdf
Howard C., Stephens P.A., Tobias J.A., Sheard C., Butchart S. y Willis S.G. 2018. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proc. R. Soc. https://doi.org/10.1098/rspb.2017.2329 DOI: https://doi.org/10.1098/rspb.2017.2329
Keith S., Baird A., Hobbs J., Woolsey E., Hoey A., Fadli N. y Sanders N. 2018. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nature Climate Change 8, 986–991. DOI: https://doi.org/10.1038/s41558-018-0314-7
Laidre, K.L., Stern, H., Kovacs, K.M., Lowry, L., Moore, S., Regehr, E., Ferguson, S., Oystein, W., Boveng, P., Angliss, R., Born, E., Litovka, D., Quakenbush, L., Lydersen, C., Vongraven, D. y Ugarte, F. 2015. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conservation Biology, 29, 724–737. DOI: https://doi.org/10.1111/cobi.12474
Nilsson, D., Warrant, E., Johnsen, S., Hanlon, R. y Shashar N. 2012. A unique advantage for giant eyes in giant squid. Curr Biol. 22(8):683-8. DOI: https://doi.org/10.1016/j.cub.2012.02.031
Raeka-Kudla, M. 1997. The global diversity of coral reefs: A comparison with rainforests. De: Biodiversity II: Understanding and Protecting Our Biological Resources.
Reese, E.S. 1975. A comparative field study of the social behaviour and related ecology of reef fishes of the family Chaetodontidae. Z. Tierpsychol. 37: 37–61. DOI: https://doi.org/10.1111/j.1439-0310.1975.tb01126.x
Roberts, C. y Ormond, R. 1992. Butterflyfish social behaviour, with special reference to the incidence of territoriality: a review. Environmental Biology of Fishes. 34, 79-93. DOI: https://doi.org/10.1007/BF00004786
Sanford, E., Sones, J.L., García-Reyes, M., Goddard, J. y Largier, J. 2019. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci Rep 9, 4216. doi:10.1038/s41598-019-40784-3. DOI: https://doi.org/10.1038/s41598-019-40784-3
Spady, B., Munday, P. y Watson, S. 2018. Predatory strategies and behaviours in cephalopods are altered by elevated CO2. Global Change Biology Vol. 24; 6. DOI: https://doi.org/10.1111/gcb.14098
Spady, B., Nay, T., Rummer, J., Munday, P. y Watson, S. 2019. Aerobic performance of two tropical cephalopod species unaltered by prolonged exposure to projected future carbon dioxide levels. Conservation Physiology, Volume 7, Issue 1. DOI: https://doi.org/10.1093/conphys/coz024
Seebacher, F., White, C.R. y Franklin, C.E. 2015. Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change 5, 61-66. DOI: https://doi.org/10.1038/nclimate2457
Sparks, T.H., Dennis, R., Croxton, P. y Cade, M. 2007. Increased migration of Lepidoptera linked to climate change. Eur. J. Entomol. 104: 139–143. DOI: https://doi.org/10.14411/eje.2007.019
Stirling, I. 1974. Midsummer observations on the behaviour of wild polar bears (Ursus maritimus). Canadian Journal of Zoology, 52, 1191–1198. DOI: https://doi.org/10.1139/z74-157
Stroeve, J., Serreze, M., Holland, M., Kay, J., Malanik J. y Barret, A. 2012. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climate Change, 110(3-4), 1005-1027. DOI: https://doi.org/10.1007/s10584-011-0101-1
Van Buskirk, J. 2012. Behavioural plasticity and environmental change. In: Candolin, U; Wong, B B M. Behavioural Responses to a Changing World. Mechanisms and Consequences. Oxford: Oxford University Press, 145-158. DOI: https://doi.org/10.1093/acprof:osobl/9780199602568.003.0011
Williams, S.E., Shoo, L.P., Hoffman, A.A. y Langham, G. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6:2621 – 2626. DOI: https://doi.org/10.1371/journal.pbio.0060325
Willis, C.G., Ruhfel, B., Primack, R.B., Miller-Rushing, A.J., y Davis, C. 2008. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. PNAS 105 (44) 17029-17033 https://doi.org/10.1073/pnas.0806446105 DOI: https://doi.org/10.1073/pnas.0806446105
Wong, B. y Candolin, U. 2012. Behavioural Responses to a Changing World: Mechanisms & Consequences. Oxford: Oxford University Press. DOI: https://doi.org/10.1093/acprof:osobl/9780199602568.001.0001
Xavier, J., Fretwell, P., Peck, L. y Turner, J. 2016. Climate change and polar range expansions: Could cuttlefish cross the Arctic? Marine Biology; 163(4). DOI: https://doi.org/10.1007/s00227-016-2850-x