¿Qué atrae a las hembras de los mosquitos a oviponer?
Los secretos detrás de sus elecciones
DOI:
https://doi.org/10.29105/bys8.16-193Keywords:
Mosquitoes, oviposition behavior, infochemicals, semiochemicals, urbanization, climate change, autocidal ovitrap, vector controlAbstract
Oviposition site selection by female mosquitoes is a multifactorial process integrating chemical signals, physical factors, and evolutionary adaptations. This behavior not only ensures the survival of their offspring but also has critical implications for the transmission of diseases such as dengue, malaria, and Zika, among others. This article explores the mechanisms involved in oviposition site selection, highlighting the role of chemical signals and their integration with physical factors and ecological processes. It also addresses how urbanization and climate change have significantly altered oviposition patterns, created artificial habitats, and modified mosquito population dynamics. Finally, the article examines how this knowledge has driven the development of innovative vector control tools, including autocidal ovitraps, autodissemination devices, and novel materials such as hydrogels and semiochemicals to attract or repel gravid females. These integrated strategies provide effective tools for mosquito surveillance, vector population reduction, and the mitigation of mosquito-borne diseases.
Downloads
References
Abbasi, E. 2025. Global expansion of Aedes mosquitoes and their role in the transboundary spread of emerging arboviral diseases: A comprehensive review. IJID One Health 6: 100058. https://doi.org/10.1016/j.ijidoh.2025.100058 DOI: https://doi.org/10.1016/j.ijidoh.2025.100058
Aguilar-Durán, J.A., J.R. Garay-Martínez, N.A. Fernández-Santos, C. García-Gutiérrez, J.G. Estrada-Franco, R. Palacios-Santana, M.A. Rodríguez-Pérez. 2024. Grass Infusions in autocidal gravid ovitraps to lure Aedes albopictus. Journal of the American Mosquito Control Association. 40(1):71-74. https://doi.org/10.2987/23-7157 DOI: https://doi.org/10.2987/23-7157
Albeny-Simões, D., E.G. Murrell, S.L. Elliot, M.R. Andrade, E. Lima, S.A. Juliano, E.F. Vilela. 2014. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia. 175 (2):481-492. https://doi.org/10.1007/s00442-014-2910-1 DOI: https://doi.org/10.1007/s00442-014-2910-1
Allan, S.A., D.L. Kline. 1998. Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology. 35 (6):943-947. https://doi.org/10.1093/jmedent/35.6.943 DOI: https://doi.org/10.1093/jmedent/35.6.943
Allgood, D.W., D.A. Yee. 2017. Oviposition preference and offspring performance in container breeding mosquitoes: evaluating the effects of organic compounds and laboratory colonisation. Ecological Entomology. 42 (4):506-516. https://doi.org/10.1111/een.12412 DOI: https://doi.org/10.1111/een.12412
Alphey, L., M. Benedict, R. Bellini, G.G. Clark, D.A. Dame, M.W. Service, S.L. Dobson. 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne and Zoonotic Diseases. 10 (3):295-311. https://doi.org/10.1089/vbz.2009.0014 DOI: https://doi.org/10.1089/vbz.2009.0014
Amarakoon, D., A. Chen, S. Rawlins, D.D. Chadee, M. Taylor, and R. Stennett. 2008. Dengue epidemics in the Caribbean-temperature indices to gauge the potential for onset of dengue. Mitigation and Adaptation Strategies for Global Change. 13:341–357. https://doi.org/10.1007/s11027-007-9114-5 DOI: https://doi.org/10.1007/s11027-007-9114-5
Angelon, K.A., J.W. Petranka. 2002. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. Journal of Chemical Ecology. 28(4):797-806. https://doi.org/10.1023/a:1015292827514 DOI: https://doi.org/10.1023/A:1015292827514
Asmare, Y., S.R. Hill, R.J. Hopkins, H. Tekie, R. Ignell. 2017. The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii. Malaria Journal. 7;16(1):65. https://doi.org/10.1186/s12936-017-1717-z DOI: https://doi.org/10.1186/s12936-017-1717-z
Avramov, M., A. Thaivalappil, A. Ludwig, L. Miner, C.I. Cullingham, L. Waddell, D.R. Lapen. 2024. Relationships between water quality and mosquito presence and abundance: a systematic review and meta-analysis. Journal of Medical Entomology. 12;61(1):1-33. https://doi.org/10.1093/jme/tjad139 DOI: https://doi.org/10.1093/jme/tjad139
Baak-Baak, C.M., A. D. Rodríguez-Ramírez, J.E. García-Rejón, S. Ríos-Delgado, J.L. Torres-Estrada. 2013. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti. Journal of Vector Ecology. 38(1):175-81. https://doi.org/10.1111/j.1948-7134.2013.12024.x DOI: https://doi.org/10.1111/j.1948-7134.2013.12024.x
Barbosa, R.M., L.N. Regis. 2011. Monitoring temporal fluctuations of Culex quinquefasciatus using oviposition traps containing attractant and larvicide in an urban environment in Recife, Brazil. Memórias do Instituto Oswaldo Cruz. 106(4):451-5. https://doi.org/10.1590/s0074-02762011000400011 DOI: https://doi.org/10.1590/S0074-02762011000400011
Barbosa, R.M., A. Souto, A.E. Eiras, L. Regis. 2007. Laboratory and field evaluation of an oviposition trap for Culex quinquefasciatus (Diptera: Culicidae). Memórias do Instituto Oswaldo Cruz. 102(4):523-9. https://doi.org/10.1590/s0074-02762007005000058 DOI: https://doi.org/10.1590/S0074-02762007005000058
Barbosa, R.M., L. Regis, R. Vasconcelos, W.S. Leal. 2010. Culex mosquitoes (Diptera: Culicidae) egg laying in traps loaded with Bacillus thuringiensis variety israelensis and baited with skatole. Journal of Medical Entomology. 47(3):345-8. https://doi.org/10.1093/jmedent/47.3.345 DOI: https://doi.org/10.1093/jmedent/47.3.345
Barrera, R., A. Harris, R.R. Hemme, G. Felix, N. Nazario, J.L. Muñoz-Jordan, D. Rodriguez, J. Miranda, E. Soto, S. Martinez, K. Ryff, C. Perez, V. Acevedo, M. Amador, S.H. Waterman. 2019. Citywide control of Aedes aegypti (Diptera: Culicidae) during the 2016 Zika epidemic by integrating community awareness, education, source reduction, larvicides, and mass mosquito trapping. Journal of Medical Entomology. 56(4):1033-1046. http://dx.doi.org/10.1093/jme/tjz009 DOI: https://doi.org/10.1093/jme/tjz009
Beehler, J.W., J.G. Millar, M.S. Mulla. 1994. Protein hydrolysates and associated bacterial contaminants as oviposition attractants for the mosquito Culex quinquefasciatus. Medical and Veterinary Entomology. 8(4):381-385. https://doi.org/10.1111/j.1365-2915.1994.tb00103.x DOI: https://doi.org/10.1111/j.1365-2915.1994.tb00103.x
Benelli, G., S. Bedini, F. Cosci, C. Toniolo, B. Conti, M. Nicoletti. 2015. Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitology Research. 114(1): 227–236. http://dx.doi.org/10.1007/s00436-014-4183-3 DOI: https://doi.org/10.1007/s00436-014-4183-3
Bentley, M.D., J.F. Day. 1989. Chemical ecology and behavioral aspects of mosquito oviposition. Annual Review of Entomology. 34: 401-421. https://doi.org/10.1146/annurev.en.34.010189.002153 DOI: https://doi.org/10.1146/annurev.ento.34.1.401
Benzon, G. L., C.S. Apperson. 1988. Reexamination of chemically mediated oviposition behavior in Aedes aegypti (L.) (Diptera: Culicidae). Journal of Medical Entomology. 25 (3): 158-164. https://doi.org/10.1093/jmedent/25.3.158 DOI: https://doi.org/10.1093/jmedent/25.3.158
Bernáth, B., G. Horváth, J. Gál, G. Fekete, V.B. Meyer-Rochow. 2008. Polarized light and oviposition site selection in the yellow fever mosquito: no evidence for positive polarotaxis in Aedes aegypti. Vision Research. 48(13):1449-1455. https://doi.org/10.1016/j.visres.2008.04.007 DOI: https://doi.org/10.1016/j.visres.2008.04.007
Blackwell, A., A.J. Mordue, B.S. Hansson, L.J. Wadhams, and J.A. Pickett. 1993. A behavioral and electrophysiological study of oviposition cues for Culex quinquefasciatus. Physiological Entomology. 18 (4): 343-348. https://doi.org/10.1111/j.1365-3032.1993.tb00607.x DOI: https://doi.org/10.1111/j.1365-3032.1993.tb00607.x
Blaustein, L., B.P. Kotler. 1993. Oviposition habitat selection by the mosquito, Culiseta longiareolata: effects of conspecifics, food and green toad tadpoles. Ecological Entomology. 18(2):104 – 108. https://doi.org/10.1111/j.1365-2311.1993.tb01190.x DOI: https://doi.org/10.1111/j.1365-2311.1993.tb01190.x
Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel, J.E. Cohen. 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia. 138(2):300-5. https://doi.org/10.1007/s00442-003-1398-x DOI: https://doi.org/10.1007/s00442-003-1398-x
Bond, J.G., J.I. Arredondo-Jimenez, M.H. Rodriguez, H. Quiroz-Martinez, and T. Williams. 2005. Oviposition habitat selection for a predator refuge and food source in a mosquito. Ecological Entomology. 30(3):255 – 263. https://doi.org/10.1111/j.0307-6946.2005.00704.x DOI: https://doi.org/10.1111/j.0307-6946.2005.00704.x
Bourtzis, K., S.L. Dobson, Z. Xi, J.L. Rasgon, M. Calvitti, L.A. Moreira, H.C. Bossin, R. Moretti, L.A. Baton, G.L. Hughes, P. Mavingui, J.R. Gilles. 2014. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Tropica. 132 Suppl: S150-63. https://doi.org/10.1016/j.actatropica.2013.11.004 DOI: https://doi.org/10.1016/j.actatropica.2013.11.004
Braks, M.A., W.S. Leal, R.T. Cardé. 2007. Oviposition responses of gravid female Culex quinquefasciatus to egg rafts and low doses of oviposition pheromone under semifield conditions. Journal of Chemical Ecology. 33(3):567-78. https://doi.org/10.1007/s10886-006-9223-8 DOI: https://doi.org/10.1007/s10886-006-9223-8
Brouazin, R., I. Claudel, R. Lancelot, G. Dupuy, L.C. Gouagna, M. Dupraz, T. Baldet, J. Bouyer. 2022. Optimization of oviposition trap settings to monitor populations of Aedes mosquitoes, vectors of arboviruses in La Reunion. Scientific Reports. 12(1):18450. https://doi.org/10.1038/s41598-022-23137-5 DOI: https://doi.org/10.1038/s41598-022-23137-5
Buckner, E.A., K.F. Williams, A.L. Marsicano, M.D. Latham, C.R. Lesser. 2017. Evaluating the vector control potential of the In2Care® mosquito trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee County, Florida. Journal of the American Mosquito Control Association. 33(3):193-199. https://doi.org/10.2987/17-6642R.1 DOI: https://doi.org/10.2987/17-6642R.1
Carvalho, D.O., A.R. McKemey, L. Garziera, R. Lacroix, C.A. Donnelly, L. Alphey, A. Malavasi, M.L. Capurro. 2015. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLOS Neglected Tropical Diseases. 9(7):e0003864. https://doi.org/10.1371/journal.pntd.0003864 DOI: https://doi.org/10.1371/journal.pntd.0003864
Cavalcanti, L.P.G., F.J. de Paula, R.J.S. Pontes, J. Heukelbach, J.W.D. Lima 2009. Survival of larvivorous fish used for biological control of Aedes aegypti larvae in domestic containers with different chlorine concentrations. Journal of Medical Entomology. 46 (4): 841–844. https://doi.org/10.1603/033.046.0414 DOI: https://doi.org/10.1603/033.046.0414
Chadee, D.D., A. Lakhan, W.R. Ramdath, R.C. Persad. 1993. Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad, West Indies. Journal of American Mosquito Control Association. 9(3):346-8.
Chaves, L.F., U.D. Kitron. 2011. Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales. Bulletin of Entomological Research. 101(6):633-41. https://doi.org/10.1017/S0007485310000519 DOI: https://doi.org/10.1017/S0007485310000519
Choo, Y.M., G.K. Buss, K. Tan, W.S. Leal. 2015. Multitasking roles of mosquito labrum in oviposition and blood feeding. Frontiers in Physiology. 6:306. https://doi.org/10.3389/fphys.2015.00306 DOI: https://doi.org/10.3389/fphys.2015.00306
Chumsri, A., P. Pongmanawut, F.W. Tina, M. Jaroensutasinee, K. Jaroensutasinee. 2018. Container types and water qualities affecting on number of Aedes larvae in Trang province, Thailand. Walailak Procedia. 2018(2):st43
Christophers, S. R. 1960. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, London, 752 pp.
Clements, A.N. 1992. The Biology of Mosquitoes. Volume 1: Development, Nutrition and Reproduction. Chapman & Hall, London, 509 pp. DOI: https://doi.org/10.1079/9780851993744.0000
Colton, Y.M., D.D. Chadee, D.W. Severson. 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Medical and Veterinary Entomology. 17(2):195-204. https://doi.org/10.1046/j.1365-2915.2003.00424.x DOI: https://doi.org/10.1046/j.1365-2915.2003.00424.x
Cuthbert, R.N., R. Al-Jaibachi, T. Dalu, J.T.A. Dick, and A. Callaghan. 2019. The influence of microplastics on trophic interaction strengths and oviposition preferences of dipterans. Science of the Total Environment. 651(Pt 2):2420–2423. https://doi.org/10.1016/j.scitotenv.2018.10.108 DOI: https://doi.org/10.1016/j.scitotenv.2018.10.108
Darriet, F., B. Zumbo, V. Corbel, F. Chandre. 2010. Influence of plant matter and NPK fertilizer on the biology of Aedes aegypti (Diptera: Culicidae). Parasite. 17(2):149-54. https://doi.org/10.1051/parasite/2010172149 DOI: https://doi.org/10.1051/parasite/2010172149
Darriet, F., V. Corbel. 2008. Aedes aegypti oviposition in response to NPK fertilizers. Parasite. 15(1):89-92. https://doi.org/10.1051/parasite/2008151089 DOI: https://doi.org/10.1051/parasite/2008151089
Day, J.F. 2016. Mosquito oviposition behavior and vector control. Insects. 7(4):65. https://doi.org/10.3390/insects7040065 DOI: https://doi.org/10.3390/insects7040065
Delatte, H., C. Paupy, J.S. Dehecq, J. Thiria, A.B. Failloux, D. Fontenille. 2008. Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control. Parasite. 15(1):3-13. https://doi.org/10.1051/parasite/2008151003 DOI: https://doi.org/10.1051/parasite/2008151003
Dhileepan, K. 1997. Physical factors and chemical cues in the oviposition behavior of arboviral vectors Culex annulirostris and Culex molestus (Diptera: Culicidae). Environmental Entomology. 26 (2):318-326. https://doi.org/10.1093/ee/26.2.318 DOI: https://doi.org/10.1093/ee/26.2.318
Dicke, M., M.W. Sabelis. 1988. Infochemical terminology: should it be based on cost-benefit analysis rather than origin of compounds? Functional Ecology. 2:131–139. https://doi.org/10.2307/2389687 DOI: https://doi.org/10.2307/2389687
Dilly, J., O. Santos da Silva, H.L. Pilz-Júnior, A.B. De Lemos, W.J. da Silva, T. De Freitas Milagres, L. Roldo, L.H. Alves Cândido. 2023. Novel devices and biomaterials for testing oviposition preference in Aedes aegypti. Industrial Crops and Products. 193:116206. https://doi.org/10.1016/j.indcrop.2022.116206 DOI: https://doi.org/10.1016/j.indcrop.2022.116206
Diniz, D.F.A., C.M.R. de Albuquerque, L.O. Oliva, M.A.V. de Melo-Santos, and C.F.J. Ayres. 2017. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites & Vectors 10:310. https://doi.org/10.1186/s13071-017-2235-0 DOI: https://doi.org/10.1186/s13071-017-2235-0
Duguma, D., and W.E. Walton. 2014. Effects of nutrients on mosquitoes and an emergent macrophyte, Schoenoplectus maritimus, for use in treatment wetlands. Journal of Vector Ecology. 39:1–13. DOI: https://doi.org/10.1111/j.1948-7134.2014.12063.x
Dusfour, I., J. Vontas, J.-P. David, D. Weetman, D.M. Fonseca, V. Corbel, K. Raghavendra, M.B. Coulibaly, A.J. Martins, S. Kasai, and F. Chandre. 2019. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Neglected Tropical Diseases. 13(10): e0007615.
https://doi.org/10.1371/journal.pntd.0007615. DOI: https://doi.org/10.1371/journal.pntd.0007615
Edwards, C.C., G. McConnel, D. Ramos, Y. Gurrola-Mares, K.D. Arole, M.J. Green, J.E. Cañas-Carrell, and C.L. Brelsfoard. 2023. Microplastic ingestion perturbs the microbiome of Aedes albopictus (Diptera: Culicidae) and Aedes aegypti. Journal of Medical Entomology. 60(5):884–898. https://doi.org/10.1093/jme/tjad097. DOI: https://doi.org/10.1093/jme/tjad097
El-Gendy, N.A., E.A. Shaalan. 2012. Oviposition deterrent activity of some volatile oils against the filaria mosquito vector Culex pipiens. Journal of Entomology. 9(6):435–441. https://doi.org/10.3923/je.2012.435.441 DOI: https://doi.org/10.3923/je.2012.435.441
Eneh, L.K., H. Saijo, A.K. Borg-Karlson, J.M. Lindh, G.K. Rajarao. 2016. Cedrol, a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus. Malaria Journal. 15:478. https://doi.org/10.1186/s12936-016-1536-7 DOI: https://doi.org/10.1186/s12936-016-1536-7
Ganesan, K., M.J. Mendki, M.V.S. Suryanarayana, S. Prakash, R.C. Malhotra. 2006. Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Australian Journal of Entomology. 45(1):75-80. https://doi.org/10.1111/j.1440-6055.2006.00513.x DOI: https://doi.org/10.1111/j.1440-6055.2006.00513.x
Geetha, I., K. P Paily, V. Padmanaban, K. Balaraman. 2003. Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Memórias do Instituto Oswaldo Cruz. 98(2):223-226. https://doi.org/10.1590/s0074-02762003000200010 DOI: https://doi.org/10.1590/S0074-02762003000200010
Girard, M., E. Martin, L. Vallon, V. Raquin, C. Bellet, Y. Rozier, E. Desouhant, A.E. Hay, P. Luis, C. Valiente Moro, G. Minard. 2021. Microorganisms associated with mosquito oviposition sites: implications for habitat selection and insect life histories. Microorganisms. 9(8):1589. https://doi.org/10.3390/microorganisms9081589 DOI: https://doi.org/10.3390/microorganisms9081589
Haddow, A.J. 1942. The mosquitoes of Bwamba County, Uganda. I. Bulletin of Entomological Research. 33(1):91-142. DOI: https://doi.org/10.1017/S0007485300026389
Hoel, D.F., P.J. Obenauer, M. Clark, R. Smith, T.H. Hughes, R.T. Larson, J.W. Diclaro, and S.A. Allan. 2011. Efficacy of ovitrap colors and patterns for attracting Aedes albopictus at suburban field sites in north-central Florida. Journal of the American Mosquito Control Association. 27 (3):245-251. https://doi.org/10.2987/11-6121.1 DOI: https://doi.org/10.2987/11-6121.1
Huang, J., E.D. Walker, P.E. Otienoburu, F. Amimo, J. Vulule, and J.R. Miller. 2006. Laboratory tests of oviposition by the African malaria mosquito, Anopheles gambiae, on dark soil as influenced by presence or absence of vegetation. Malaria Journal. 5:88. https://doi.org/10.1186/1475-2875-5-88 DOI: https://doi.org/10.1186/1475-2875-5-88
Hwang, YS., M.S. Mulla, J.D. Chaney, G.G. Lin, H.J. Xu. 1987. Attractancy and species specificity of 6-acetoxy-5-hexadecanolide, a mosquito oviposition attractant pheromone. Journal of Chemical Ecology. 3(2):245-52. https://doi.org/10.1007/BF01025885 DOI: https://doi.org/10.1007/BF01025885
Ikeshoji, T., I. Ichimoto, J. Konishi, Y. Naoshima, H. Ueda. 1979. 7, 11-Dimethyloctadecane: an ovipositional attractant for Aedes aegypti produced by Pseudomonas aeruginosa on capric acid substrate. Journal of Pesticide Science. 4:187-194. https://doi.org/10.1584/jpestics.4.187 DOI: https://doi.org/10.1584/jpestics.4.187
Jones, C.M., G.L. Hughes, S. Coleman, R. Fellows, and R.S. Quilliam. 2024. A perspective on the impacts of microplastics on mosquito biology and their vectorial capacity. Medical and Veterinary Entomology. 38(2):138–147. https://doi.org/10.1111/mve.12710. DOI: https://doi.org/10.1111/mve.12710
Juliano, S.A., L.P. Lounibos. 2005. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecology Letters. 8(5):558-574. https://doi.org/10.1111/j.1461-0248.2005.00755.x DOI: https://doi.org/10.1111/j.1461-0248.2005.00755.x
Khan, Z., B. Bohman, R. Ignell, S.R. Hill. 2023. Odour-mediated oviposition site selection in Aedes aegypti depends on aquatic stage and density. Parasites & Vectors. 16, 264. https://doi.org/10.1186/s13071-023-05867-1 DOI: https://doi.org/10.1186/s13071-023-05867-1
Kiflawi, M., L. Blaustein, M. Mangel. 2003. Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecifics larval density. Ecological Entomology. 28:168–173. https://doi.org/10.1046/j.1365-2311.2003.00505.x DOI: https://doi.org/10.1046/j.1365-2311.2003.00505.x
Koenraadt, C.J.M., K.P. Paaijmans, A.K. Githeko, B.G.J. Knols, W. Takken. 2003. Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats. Malaria Journal. 2, 20. https://doi.org/10.1186/1475-2875-2-20 DOI: https://doi.org/10.1186/1475-2875-2-20
Kolimenakis, A., S. Heinz, M.L. Wilson, V. Winkler, L. Yakob, A. Michaelakis, D. Papachristos, C. Richardson, O. Horstick. 2021. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit-A systematic review. PLoS Neglected Tropical Diseases. 15(9):e0009631. https://doi.org/10.1371/journal.pntd.000963 DOI: https://doi.org/10.1371/journal.pntd.0009631
Kroth, N., G.D. Cozzer, S.L. da Silva, R. de Souza Rezende, J. Dal Magro, D. Albeny-Simões. 2025. Female oviposition preferences and larval behavior of the Aedes aegypti mosquito (Linnaeus, 1762) exposed to predator cues (Odonata: Libellulidae). Limnetica, 44(1):000-000. https://doi.org/10.23818/limn.44.06 DOI: https://doi.org/10.23818/limn.44.06
Laurence, B.R., J.A. Pickett. 1982. Erythro-6-acetoxy-5-hexadecanolide, the major component of a mosquito oviposition attractant pheromone. Journal of the Chemical Society, Chemical Communications. 60. DOI: https://doi.org/10.1039/c39820000059
Laurence, B.R., J.A. Pickett. 1985. An oviposition attractant pheromone in Culex quinquefsciatus Say (Diptera: Culicidae). Bulletin of Entomological Research. 75(2):283-290. https://doi.org/10.1017/S0007485300014371 DOI: https://doi.org/10.1017/S0007485300014371
Lindh, J.M., A. Kannaste, B.G.J. Knols, I. Faye, A.K. Borg-Karlson. 2008. Oviposition responses of Anopheles gambiae s.s. (Diptera: Culicidae) and identification of volatiles from bacteria-containing solutions. Journal of Medical Entomology. 45 (6):1039-1049. https://doi.org/10.1093/jmedent/45.6.1039 DOI: https://doi.org/10.1093/jmedent/45.6.1039
Martianasari, R., P.H. Hamid. 2019. Larvicidal, adulticidal, and oviposition-deterrent activity of Pipier betle L. essential oil to Aedes aegypti. Veterinary World. 12(3):367-371. DOI: https://doi.org/10.14202/vetworld.2019.367-371
Mboera, L.E.G., G.J.C. Magogo, and K.Y. Mdira. 2003. Control of the filariasis mosquito Culex quinquefasciatus in breeding sites treated with neem (Azadiracta indica) in north-east Tanzania. Tanzania Health Research Bulletin. 5: 68-70.
Mboera, L.E.G., K.Y. Mdira, F.M. Salum, W. Takken, and J.A. Pickett. 1999. Influence of synthetic oviposition pheromone and volatiles from soakage pits and grass infusions upon oviposition site-selection of Culex mosquitoes in Tanzania. Journal of Chemical Ecology. 25:1855-1865. https://doi.org/10.1023/A:1020933800364 DOI: https://doi.org/10.1023/A:1020933800364
Mboera, L.E.G., W. Takken, K.Y. Mdira, G.J. Chuwa, and J.A. Pickett. 2000. Oviposition and behavioral responses of Culex quinquefasciatus to skatole and synthetic oviposition pheromone in Tanzania. Journal of Chemical Ecology. 26:1193-1203. https://doi.org/10.1023/A:1005432010721 DOI: https://doi.org/10.1023/A:1005432010721
McKinney, M.L. 2006. Urbanization as a major cause of biotic homogenization. Biological conservation. 127 (3):247-260. https://doi.org/10.1016/j.biocon.2005.09.005 DOI: https://doi.org/10.1016/j.biocon.2005.09.005
McMeniman, C.J., R.A. Corfas, B.J. Matthews, S.A. Ritchie, L.B. Vosshall. 2014. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell. 156(5):1060-1071. https://doi.org/10.1016/j.cell.2013.12.044 DOI: https://doi.org/10.1016/j.cell.2013.12.044
Melo, N., G.H. Wolff, A.L. Costa-da-Silva, R. Arribas, M.F. Triana, M. Gugger, J.A. Riffell, M. DeGennaro, and M.C. Stensmyr. 2020. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Current Biology. 30 (1):127-134. https://doi.org/10.1016/j.cub.2019.11.002 DOI: https://doi.org/10.1016/j.cub.2019.11.002
Mendki, M.J., K. Ganesan, S. Prakash, M.V.S. Suryanarayana, R.C. Malhotra, K. M. Rao, and R. Vaidyanathaswamy. 2000. Heneicosane: An oviposition-attractant pheromone of larval origin in Aedes aegypti mosquito. Current Science. 78 (11):1295-1296.
Metz, H.C., A.K. Miller, J. You, J. Akorli, F.W. Avila, E.A. Buckner, P. Kane, S. Otoo, A. Ponlawat, O. Triana-Chávez, K.F. Williams, C.S. McBride. 2022. Evolution of a mosquito’s hatching behavior to match its human-provided habitat. The American Naturalist. 201(2): 000–000. https://doi.org/10.1086/722481 DOI: https://doi.org/10.1086/722481
Millar, J.G., J.D. Chaney, M.S. Mulla. 1992. Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. Journal of the American Mosquito Control Association. 8(1):11-17.
Mokany, A., R. Shine. 2003. Competition between tadpoles and mosquito larvae. Oecologia 135: 615-620. https://doi.org/10.1007/s00442-003-1215-6 DOI: https://doi.org/10.1007/s00442-003-1215-6
Mosquito Taxonomic Inventory. 2024. Mosquito Taxonomic Inventory. Retrieved from https://mosquito-taxonomic-inventory.myspecies.info/ (consultado el 06/01/2025).
Munga, S., N. Minakawa, G. Zhou, O. O. J. Barrack, A.K. Githeko, G. Yan. 2006. Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu stricto. Journal of Medical Entomology. 43 (2):221-224. https://doi.org/10.1093/jmedent/43.2.221 DOI: https://doi.org/10.1093/jmedent/43.2.221
Mutero, C., P. Ng’ang’a, P. Wekoyela, J. Githure, and F. Konradsen. 2004. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields. Acta Tropica. 89:187–192. DOI: https://doi.org/10.1016/j.actatropica.2003.08.006
Muturi, E.J., B.G. Jacob, J. Shililu, and R. Novak. 2007. Laboratory studies on the effect of inorganic fertilizers on survival and development of immature Culex quinquefasciatus (Diptera: Culicidae). Journal of Vector Borne Diseases. 44:259–265. DOI: https://doi.org/10.1093/jmedent/44.3.503
Mwingira, V., L.E.G. Mboera, M. Dicke, W. Takken. 2020a. Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. Journal of Vector Ecology. 45(2):155-179. https://doi.org/10.1111/jvec.12387 DOI: https://doi.org/10.1111/jvec.12387
Mwingira, V.S., J. Spitzen, L.E.G. Mboera, J.L. Torres-Estrada, W. Takken. 2020b. The influence of larval stage and density on oviposition site-selection behavior of the afrotropical malaria mosquito Anopheles coluzzii (Diptera: Culicidae). Journal of Medical Entomology. 57(3):657-666. https://doi.org/10.1093/jme/tjz172 DOI: https://doi.org/10.1093/jme/tjz172
Nordlund, D.A., W.J. Lewis. 1976. Terminology of chemical releasing stimuli intraspecific and interspecific interactions. Journal of Chemical Ecology. 2:211-220. https://doi.org/10.1007/BF00987744 DOI: https://doi.org/10.1007/BF00987744
Obenauer, P.J., S.A. Allan, P.E. Kaufman. 2010. Aedes albopictus (Diptera: Culicidae) oviposition response to organic infusions from common flora of suburban Florida. Journal of Vector Ecology. 35(2):301-306. https://doi.org/10.1111/j.1948-7134.2010.00086.x DOI: https://doi.org/10.1111/j.1948-7134.2010.00086.x
Ohba, S-Y., M. Ohtsuka, T. Sunahara, Y. Sonoda, E. Kawashima, M. Takagi. 2012. Differential responses to predator cues between two mosquito species breeding in different habitats. Ecological Entomology. 37 (5):410-418. https://doi.org/10.1111/j.1365-2311.2012.01379.x DOI: https://doi.org/10.1111/j.1365-2311.2012.01379.x
Pamplona, L.G.C., C.H. Alencar, J.W.O. Lima, J. Heukelbach. 2009. Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish. Tropical Medicine & International Health. 14 (11):1347-1350. https://doi.org/10.1111/j.1365-3156.2009.02377.x DOI: https://doi.org/10.1111/j.1365-3156.2009.02377.x
Perich, M.J., A. Kardec, I.A. Braga, I.F. Portal, R. Burge, B.C. Zeichner, W.A. Brogdon, R.A. Wirtz. 2003. Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Medical and Veterinary Entomology. 17(2):205-210. https://doi.org/10.1046/j.1365-2915.2003.00427.x DOI: https://doi.org/10.1046/j.1365-2915.2003.00427.x
Pickett, J.A., C.M. Woodcocck. 1996. The role of mosquito olfaction in oviposition site location and in the avoidance of unsuitable hosts. Novartis Foundation Symposium. 200:109-123. https://doi.org/10.1002/9780470514948.ch9 DOI: https://doi.org/10.1002/9780470514948.ch9
Ponnusamy, L., D.M. Wesson, C. Arellano, C. Schal, and C.S. Apperson. 2010a. Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microbiology of Aquatic Systems. 59 (1):158-173. https://doi.org/10.1007/s00248-009-9565-1 DOI: https://doi.org/10.1007/s00248-009-9565-1
Ponnusamy, L., N. Xu, K. Böröczky, D.M. Wesson, L.A. Ayyash, C. Schal, C.S. Apperson. 2010b. Oviposition responses of the mosquitoes Aedes aegypti and Aedes albopictus to experimental plant infusions in laboratory bioassays. Journal of Chemical Ecology. 36(7):709–719. https://doi.org/10.1007/s10886-010-9806-2 DOI: https://doi.org/10.1007/s10886-010-9806-2
Ponnusamy, L., N. Xu, S. Nojima, D.M. Wesson, C. Schal, C.S. Apperson. 2008. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. The Proceedings of the National Academy of Sciences. 105 (27):9262-9267. https://doi.org/10.1073/pnas.0802505105 DOI: https://doi.org/10.1073/pnas.0802505105
Powell, J.R., W.J. Tabachnick. 2013. History of domestication and spread of Aedes aegypti--a review. Memórias do Instituto Oswaldo Cruz. 108 Suppl 1(Suppl 1):11-17. https://doi.org/10.1590/0074-0276130395 DOI: https://doi.org/10.1590/0074-0276130395
Prajapati, V., A.K. Tripathi, K.K. Aggarwal, S.P.S. Khanuja. 2005. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresource Technology. 96(16):1749–1757. https://doi.org/10.1016/j.biortech.2005.01.007 DOI: https://doi.org/10.1016/j.biortech.2005.01.007
Prasad, A., S. Sreedharan, B. Bakthavachalu, S. Laxman. 2023. Eggs of the mosquito Aedes aegypti survive desiccation by rewiring their polyamine and lipid metabolism. PLoS Biology. 21(10): e3002342. https://doi.org/10.1371/journal.pbio.3002342 DOI: https://doi.org/10.1371/journal.pbio.3002342
Raji, J.I., N. Melo, J.S. Castillo, S. Gonzalez, V. Saldana, M.C. Stensmyr, M. DeGennaro. 2019. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Current Biology. 29(8):1253-1262. https://doi.org/10.1016/j.cub.2019.02.045 DOI: https://doi.org/10.1016/j.cub.2019.02.045
Rajkumar, S., A. Jebanesan. 2008. Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitology Research. 104 (1):19-25. https://doi.org/10.1007/s00436-008-1145-7 DOI: https://doi.org/10.1007/s00436-008-1145-7
Reeves, W.K. 2004. Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes. Journal of Vector Ecology. 29:159-163.
Reiter, P., M.A. Amador, N. Colon N. 1991. Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. Journal of the American Mosquito Control Association. 7(1):52-5.
Reiter, P. 1996. Global warming and mosquito-borne disease in USA. Lancet. 348(9027):622. https://doi.org/10.1016/S0140-6736(05)64844-1 DOI: https://doi.org/10.1016/S0140-6736(05)64844-1
Rejmánková, E., R. Higashi, J. Grieco, N. Achee, D. Roberts. 2005. Volatile substances from larval habitats mediate species-specific oviposition in Anopheles mosquitoes. Journal of Medical Entomology. 42(2):95-103. https://doi.org/10.1093/jmedent/42.2.95 DOI: https://doi.org/10.1093/jmedent/42.2.95
Rey, J.R., S.M. O'Connell. 2014. Oviposition by Aedes aegypti and Aedes albopictus: influence of congeners and of oviposition site characteristics. Journal of Vector Ecology. 39(1):190-196. https://doi.org/10.1111/j.1948-7134.2014.12086.x DOI: https://doi.org/10.1111/j.1948-7134.2014.12086.x
Rochlin, I., A. Faraji, D.V. Ninivaggi, C.M. Barker, A.M. Kilpatrick. 2016. Anthropogenic impacts on mosquito populations in North America over the past century. Nature Communications. 7: 13604. https://doi.org/10.1038/ncomms13604 DOI: https://doi.org/10.1038/ncomms13604
Romeo-Aznar, V., L.P. Freitas, O. Gonçalves Cruz, A.A. King, M. Pascual. 2022. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nature Communications. 13:1996. https://doi.org/10.1038/s41467-022-28231-w DOI: https://doi.org/10.1038/s41467-022-28231-w
Rose, N.H., M. Sylla, A. Badolo, J. Lutomiah, D. Ayala, O.B. Aribodor, N. Ibe, J. Akorli, S. Otoo, J.P. Mutebi, A.L. Kriete, E.G. Ewing, R. Sang, A. Gloria-Soria, J.R. Powell, R.E. Baker, B.J. White, J.E. Crawford, C.S. McBride. 2020. Climate and urbanization drive mosquito preference for humans. Current Biology. 30 (18):3570-3579.e6. https://doi.org/10.1016/j.cub.2020.06.092 DOI: https://doi.org/10.1016/j.cub.2020.06.092
Ruel, D.M., Bohbot, J.D. 2022. The molecular and neural determinants of olfactory behaviour in mosquitoes. En Ignell, R., C.R. Lazzari, M.G. Lorenzo, S.R. Hill (Eds.). Sensory ecology of disease vectors (pp. 71–115). Wageningen Academic Publishers, 911 pp. https://doi.org/10.3920/978-90-8686-932-9_3 DOI: https://doi.org/10.3920/978-90-8686-932-9_3
Santana, A.L., R.A. Roque, A.E. Eiras. 2006. Characteristics of grass infusions as oviposition attractants to Aedes (Stegomyia) (Diptera: Culicidae). Journal of Medical Entomology. 43 (2):214–220. https://doi.org/10.1093/jmedent/43.2.214 DOI: https://doi.org/10.1093/jmedent/43.2.214
Schoelitsz, B., V. Mwingira, L.E.G. Mboera, H. Beijleveld, C.J.M. Koenraadt, J. Spitzen, J.J.A. van Loon, W. Takke. 2020. Chemical mediation of oviposition by Anopheles mosquitoes: a push-pull system driven by volatiles associated with larval stages. Journal of Chemical Ecology. 46 (4):397-409. https://doi.org/10.1007/s10886-020-01175-5 DOI: https://doi.org/10.1007/s10886-020-01175-5
Sérandour, J., J. Willison, W. Thuiller, P. Ravanel, G. Lempérière. 2010. Environmental drivers for Coquillettidia mosquito habitat selection: a method to highlight key field factors. Hydrobiologia. 652:377-388. https://doi.org/10.1007/s10750-010-0372-y DOI: https://doi.org/10.1007/s10750-010-0372-y
Silberbush, A., L. Blaustein. 2011. Mosquito females quantify risk of predation to their progeny when selecting an oviposition site. Functional Ecology. 25: 1091-1095. https://doi.org/10.1111/j.1365-2435.2011.01873.x DOI: https://doi.org/10.1111/j.1365-2435.2011.01873.x
Sivagnaname, N., D.D. Amalraj, M. Kalyanasundaram, P.K. Das. 2001. Oviposition attractancy of an infusion from a wood inhabiting fungus for vector mosquitoes. Indian Journal of Medical Research. 114:18-24.
Sivakumar, R., A. Jebanesan, M. Govindrajan, P. Rajasekar. 2011. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.), (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine. 4 (9):706-710. https://doi.org/10.1016/S1995-7645(11)60178-8 DOI: https://doi.org/10.1016/S1995-7645(11)60178-8
Snetselaar, J., R. Andriessen, R.A. Suer, A.J. Osinga, B.G.J. Knols, M. Farenhorst. 2014. Development and evaluation of a novel contamination device that targets multiple life-stages of Aedes aegypti. Parasites & Vectors. 7:200. https://doi.org/10.1186/1756-3305-7-200 DOI: https://doi.org/10.1186/1756-3305-7-200
Spencer, M., L. Blaustein, J.E. Cohen. 2002. Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology. 83 (3):669-679. DOI: https://doi.org/10.1890/0012-9658(2002)083[0669:OHSBMC]2.0.CO;2
Stav, G., L. Blaustein, J. Margalith, 1999. Experimental evidence for predation risk sensitive oviposition by a mosquito, Culiseta longiareolata. Ecological Entomology. 24:202-207. https://doi.org/10.1046/j.1365-2311.1999.00183.x DOI: https://doi.org/10.1046/j.1365-2311.1999.00183.x
Sumba, L.A., C.B. Ogbunugafor, A.L. Deng, and A. Hassanali. 2008. Regulation of oviposition in Anopheles gambiae s.s.: role of inter- and intra-specific signals. Journal of Chemical Ecology. 34:1430-1436. https://doi.org/10.1007/s10886-008-9549-5 DOI: https://doi.org/10.1007/s10886-008-9549-5
Sumba, L.A., T.O. Guda, A.L. Deng, A. Hassanali, J.C. Beier, B.G.J. Knols. 2004. Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. International Journal of Tropical Insect Science. 24:260-265. https://doi.org/10.1079/IJT200433 DOI: https://doi.org/10.1079/IJT200433
Tchouassi, D.P., S.B. Agha, J. Villinger, R. Sang, B. Torto. 2022. The distinctive bionomics of Aedes aegypti populations in Africa. Current Opinion in Insect Science. 54:100986. https://doi.org/10.1016/j.cois.2022.100986 DOI: https://doi.org/10.1016/j.cois.2022.100986
Thavara, U., A. Tawatsin, J. Chompoosri. 2004. Evaluation of attractants and egg-laying substrate preference for oviposition by Aedes albopictus (Diptera: Culicidae). Journal of Vector Ecology. 29 (1):66–72.
Torres-Estrada, J.L., R.A. Meza-Alvarez, J. Cibrian-Tovar, M.H. Rodriguez-Lopez, J.I. Arredondo-Jimenez, L. Cruz-Lopez, and J.C. Rojas-Leon. 2005. Vegetation-derived cues for the selection of oviposition substrates by Anopheles albimanus under laboratory conditions. Journal of the American Mosquito Control Association. 21(4):344-349. https://doi.org/10.2987/8756-971X(2006)21[344:VCFTSO]2.0.CO;2 DOI: https://doi.org/10.2987/8756-971X(2006)21[344:VCFTSO]2.0.CO;2
Torres-Estrada, J.L., M.H. Rodriguez, L. Cruz-Lopez, J.I. Arredondo-Jimenez. 2001. Selective oviposition by Aedes aegypti (Diptera: Culicidae) in response to Mesocyclops longisetus (Copepoda: Cyclopoidea) under laboratory and field conditions. Journal of Medical Entomology. 38 (2):188-192. https://doi.org/10.1603/0022-2585-38.2.188 DOI: https://doi.org/10.1603/0022-2585-38.2.188
Torto, B., D.P. Tchouassi. 2024. Chemical ecology and management of dengue vectors. Annual Review of Entomology. 69:159-182. https://doi.org/10.1146/annurev-ento-020123-015755 DOI: https://doi.org/10.1146/annurev-ento-020123-015755
Trexler, J.D., C.S. Apperson, C. Schal. 1998. Laboratory and field evaluations of Oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera : Culicidae) to oak leaf infusions. Journal of Medical Entomology. 35 (6): 967-976. https://doi.org/10.1093/jmedent/35.6.967 DOI: https://doi.org/10.1093/jmedent/35.6.967
Trexler, J.D., C.S. Apperson, L. Zurek, C. Gemeno, C. Schal, M. Kaufman, E. Walker, D.W. Watson, and L. Wallace. 2003. Role of bacteria in mediating the oviposition responses of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology. 40 (6):841-848. https://doi.org/10.1603/0022-2585-40.6.841 DOI: https://doi.org/10.1603/0022-2585-40.6.841
Van Dam, A.R., W.E. Walton. 2008. The effect of predatory fish exudates on the ovipostional behavior of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis. Medical and Veterinary Entomology. 22 (4):399-404. https://doi.org/10.1111/j.1365-2915.2008.00764.x DOI: https://doi.org/10.1111/j.1365-2915.2008.00764.x
Warikoo, R., S. Kumar. 2014. Oviposition altering and ovicidal efficacy of root extracts of Argemone mexicana against dengue vector, Aedes aegypti (Diptera: Culicidae). Journal of Entomology and Zoology Studies. 2 (4):11-17.
Warikoo, R., S. Kumar. 2015. Investigation on the oviposition-deterrence and ovicidal potential of the leaf extracts of Argemone mexicana against an Indian strain of dengue vector, Aedes aegypti (Diptera: Culicidae). Applied Research Journal. 1(4):208–215.
Wilke, A.B.B., C. Chase, C. Vasquez, A. Carvajal, J. Medina, W.D. Petrie, J.C. Beier. 2019. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Scientific Reports. 9:15335. https://doi.org/10.1038/s41598-019-51787-5 DOI: https://doi.org/10.1038/s41598-019-51787-5
Williams, R.E. 1962. Effect of coloring oviposition media with regard to the mosquito Aedes triseriatus (Say). The Journal of Parasitology. 48:919-925. DOI: https://doi.org/10.2307/3275123
Wondwosen, B., M. Dawit, Y. Debebe, H. Tekie, S.R: Hill, R. Ignell. 2021. Development of a chimeric odour blend for attracting gravid malaria vectors. Malaria Journal. 20:262. https://doi.org/10.1186/s12936-021-03797-w DOI: https://doi.org/10.1186/s12936-021-03797-w
Wondwosen, B., S.R. Hill, G. Birgersson, E. Seyoum, H. Tekie, R. Ignell. 2017. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malaria Journal. 16:39. https://doi.org/10.1186/s12936-016-1656-0 DOI: https://doi.org/10.1186/s12936-016-1656-0
Wong, J., S.T. Stoddard, H. Astete, A.C. Morrison, T.W. Scott. 2011. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Neglected Tropical Diseases. 5(4):e1015. https://doi.org/10.1371/journal.pntd.0001015 DOI: https://doi.org/10.1371/journal.pntd.0001015
Wooding, M., Y. Naudé, E. Rohwer, M. Bouwer. 2020. Controlling mosquitoes with semiochemicals: a review. Parasites & Vectors. 13(1):80. https://doi.org/10.1186/s13071-020-3960-3 DOI: https://doi.org/10.1186/s13071-020-3960-3
WHO (World Health Organization). 2024. Vector-borne diseases. En: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (consultado el 06/01/2025).
Xia, S., H.K. Dweck, J. Lutomiah, R. Sang, C.S. McBride, N.H. Rose, D. Ayala, J.R. Powell. 2021. Larval sites of the mosquito Aedes aegypti formosus in forest and domestic habitats in Africa and the potential association with oviposition evolution. Ecology and Evolution. 11(22):16327-16343. https://doi.org/10.1002/ece3.8332 DOI: https://doi.org/10.1002/ece3.8332
Zahouli, J.B.Z., B.G. Koudou, P. Müller, D. Malone, Y. Tano, J. Utzinger. 2017. Effect of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Côte d'Ivoire. PLoS One. 12(12):e0189082. https://doi.org/10.1371/journal.pone.0189082 DOI: https://doi.org/10.1371/journal.pone.0189082
Zuharah, W.F., P.J. Lester. 2010. Can adults of the New Zealand mosquito Culex pervigilans (Bergorth) detect the presence of a key predator in larval habitats?. Journal of Vector Ecology. 35(1):100-5. DOI: https://doi.org/10.1111/j.1948-7134.2010.00065.x
