¿Qué atrae a las hembras de los mosquitos a oviponer?

Los secretos detrás de sus elecciones

Autores/as

DOI:

https://doi.org/10.29105/bys8.16-193

Palabras clave:

Mosquitos, comportamiento de oviposición, infoquímicos, semioquímicos, urbanización, cambio climático.ovitrampa autocida, control vectorial

Resumen

La selección de sitios de oviposición por parte de las hembras de mosquitos es un proceso multifactorial que integra señales químicas, factores físicos y adaptaciones evolutivas. Este comportamiento no solo asegura la supervivencia de la descendencia, sino que también tiene implicaciones críticas en la transmisión de enfermedades como el dengue, malaria y Zika, entre otras. Este artículo explora los mecanismos involucrados en la selección de sitios de oviposición, destacando el papel de las señales químicas, su integración con factores físicos y procesos ecológicos. También se aborda cómo la urbanización y el cambio climático han alterado significativamente los patrones de oviposición, generando hábitats artificiales y modificando la dinámica poblacional de los mosquitos. Finalmente, se analiza cómo estos conocimientos han impulsado el desarrollo de herramientas innovadoras de control vectorial, incluyendo ovitrampas autocidas, dispositivos autodiseminadores y materiales novedosos como hidrogeles y semioquímicos para atraer o repeler hembras grávidas. Estas estrategias integradas ofrecen herramientas efectivas para la vigilancia, reducción de poblaciones vectoriales y mitigación de enfermedades transmitidas por mosquitos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Adriana E. Flores Suárez, Universidad Autónoma de Nuevo León

Profesora e investigadora de la Facultad de Ciencias Biológicas de la UANL, especialista en efectividad biológica y resistencia a plaguicidas en artrópodos de importancia médica y veterinaria. Doctorado en Ciencias y miembro nivel III del Sistema Nacional de Investigadores. Ha publicado 80 artículos indexados en el JCR y 36 capítulos de libros, con más de 1,500 citas. Consultora de la OMS en resistencia a insecticidas y responsable de 17 proyectos financiados por organismos como CONACYT y NIH. Coordinadora del Doctorado en Entomología Médica y Veterinaria y creadora de infraestructura clave para la investigación. Innovadora con dos patentes en larvicidas vegetales.

Selene M. Gutiérrez Rodríguez, Universidad Autónoma de Nuevo León

Químico Bacteriólogo Parasitólogo de formación (2007), con maestría en ciencias con acentuación en Entomología Médica (2016). Ha participado en 13 artículos publicados en revistas indexadas dentro de la línea de investigación de resistencia en artrópodos de importancia médica y veterinaria. Además, ha participado en diversos proyectos de investigación financiados por CONAHCYT, Bill & Melinda Gates Foundation y la Organización Mundial de la Salud (OMS). Es investigadora en la Faculatd de Ciencias Biológicas de la UANL y está cursando el Doctorado en Entomología Médica y Veterinaria en la misma institución. Su trabajo en investigación ha sido principalmente en el área de Resistencia en Artrópodos de importancia Médico Veterinario.

Jesús A. Dávila Barboza, Universidad Autónoma de Nuevo León

Profesor asociado en la Facultad de Ciencias Biológicas de la UANL especialista en resistencia a plaguicidas en triatominos vectores de la enfermedad de Chagas. Doctor en Ciencias con acentuación en Entomología Médica y miembro candidato del Sistema Nacional de Investigadores. Ha publicado una docena de artículos en revistas de alto impacto y trabajado como consultor internacional en proyectos de monitoreo y evaluación del Zika para organizaciones como USAID. Coordinador de la Especialidad en Entomología Médica y Veterinaria desde 2022 y responsable de proyectos de investigación financiados por PAICyT. Su experiencia incluye estancias académicas internacionales y participación en congresos nacionales e internacionales.

Eduardo Alfonso Rebollar Téllez, Universidad Autónoma de Nuevo León

Profesor e investigador en la Facultad de Ciencias Biológicas de la UANL, enfocado en la ecología, taxonomía y biología de vectores de enfermedades como leishmaniasis, Chagas y dengue. Miembro nivel II del Sistema Nacional de Investigadores y con Perfil PRODEP. Ha actualizado registros de biodiversidad y distribución geográfica de Phlebotominae y vectores de Chagas, además de desarrollar trampas de bajo costo para Aedes aegypti. Ha dirigido 6 tesis de doctorado, 2 de maestría y 2 de licenciatura, participando activamente en docencia y desarrollo de programas educativos de licenciatura y posgrado del PNPC-CONACYT.

Iram Pablo Rodríguez Sánchez, Universidad Autónoma de Nuevo León

Químico Bacteriólogo Parasitólogo, con Doctorado en Ciencias con Acentuación en Entomatología Médica por la Facultad de Ciencias Biológicas (FCB) de la UANL. Profesor titular A de tiempo completo en la FCB, UANL desde el 2020. Jefe del laboratorio de Laboratorio de Fisiología Molecular y Estructural, FCB-UANL. Realiza investigación mayoritariamente en Biotecnología y Bioinformática. Es miembro del Sistema Nacional de Investigadoras e Investigadores de México nivel II.

Daniela Cerda Apresa, Universidad Autónoma de Nuevo León

Licenciada en Biotecnología genómica (2017), cuenta con una Maestría en Ciencias con Acentuación en Microbiología (2019) y con un Doctorado en Entomología Médica y Veterinaria (2024) por parte de la Facultad de Ciencias Biológicas (Universidad Autónoma de Nuevo León). Ha colaborado en diversos proyectos que incluyen el uso de actinomicetos como agentes de control biológico contra poblaciones de Aedes aegypti, bioabsorción de compuestos tóxicos, caracterización de enzimas hidrolíticas y su potencial contra hongos fitopatógenos, además de evaluar insecticidas con distintos modos de acción a los convencionales con la finalidad de integrarlos en los programas de rotación a insecticidas y prevenir la resistencia en artrópodos de importancia médica veterinaria

Beatriz López Monroy, Universidad Autónoma de Nuevo León

Bióloga egresada de la Universidad Autónoma de Nuevo León. Realizó sus estudios de Maestría y Doctorado en Ciencias en la UANL con las acentuaciones de Entomología Médica y Manejo y Administración de Recursos Vegetales, respectivamente. Actualmente, es profesora adscrita a la Facultad de Ciencias Biológicas, UANL impartiendo cátedra a estudiantes de licenciatura y posgrado. Cuenta con el perfil PRODEP. Funge como Coordinadora de la Maestría y Doctorado en Entomología Médica y Veterinaria. Jefa del Laboratorio de Entomología Médica y líder del Cuerpo Académico Consolidado de Acarología y Entomología. Su trabajo de investigación se ubica dentro de la línea de “Efectividad biológica y resistencia a los plaguicidas en artrópodos de importancia médica y veterinaria”. Línea en la que ha sido responsable de proyectos de investigación con financiamiento interno y externo, así como autor y coautor de artículos publicados en revistas indexadas. Directora de alrededor de 15 tesis de posgrado y pregrado. Expositor de más de 30 trabajos en foros nacionales e internacionales. Además, y como parte de los servicios profesionales que oferta la FCB-UANL a empresas, participa en la evaluación de la efectividad biológicas de plaguicidas y sustancias tóxicas en artrópodos vectores de enfermedades.

Citas

Abbasi, E. 2025. Global expansion of Aedes mosquitoes and their role in the transboundary spread of emerging arboviral diseases: A comprehensive review. IJID One Health 6: 100058. https://doi.org/10.1016/j.ijidoh.2025.100058 DOI: https://doi.org/10.1016/j.ijidoh.2025.100058

Aguilar-Durán, J.A., J.R. Garay-Martínez, N.A. Fernández-Santos, C. García-Gutiérrez, J.G. Estrada-Franco, R. Palacios-Santana, M.A. Rodríguez-Pérez. 2024. Grass Infusions in autocidal gravid ovitraps to lure Aedes albopictus. Journal of the American Mosquito Control Association. 40(1):71-74. https://doi.org/10.2987/23-7157 DOI: https://doi.org/10.2987/23-7157

Albeny-Simões, D., E.G. Murrell, S.L. Elliot, M.R. Andrade, E. Lima, S.A. Juliano, E.F. Vilela. 2014. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia. 175 (2):481-492. https://doi.org/10.1007/s00442-014-2910-1 DOI: https://doi.org/10.1007/s00442-014-2910-1

Allan, S.A., D.L. Kline. 1998. Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology. 35 (6):943-947. https://doi.org/10.1093/jmedent/35.6.943 DOI: https://doi.org/10.1093/jmedent/35.6.943

Allgood, D.W., D.A. Yee. 2017. Oviposition preference and offspring performance in container breeding mosquitoes: evaluating the effects of organic compounds and laboratory colonisation. Ecological Entomology. 42 (4):506-516. https://doi.org/10.1111/een.12412 DOI: https://doi.org/10.1111/een.12412

Alphey, L., M. Benedict, R. Bellini, G.G. Clark, D.A. Dame, M.W. Service, S.L. Dobson. 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne and Zoonotic Diseases. 10 (3):295-311. https://doi.org/10.1089/vbz.2009.0014 DOI: https://doi.org/10.1089/vbz.2009.0014

Amarakoon, D., A. Chen, S. Rawlins, D.D. Chadee, M. Taylor, and R. Stennett. 2008. Dengue epidemics in the Caribbean-temperature indices to gauge the potential for onset of dengue. Mitigation and Adaptation Strategies for Global Change. 13:341–357. https://doi.org/10.1007/s11027-007-9114-5 DOI: https://doi.org/10.1007/s11027-007-9114-5

Angelon, K.A., J.W. Petranka. 2002. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. Journal of Chemical Ecology. 28(4):797-806. https://doi.org/10.1023/a:1015292827514 DOI: https://doi.org/10.1023/A:1015292827514

Asmare, Y., S.R. Hill, R.J. Hopkins, H. Tekie, R. Ignell. 2017. The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii. Malaria Journal. 7;16(1):65. https://doi.org/10.1186/s12936-017-1717-z DOI: https://doi.org/10.1186/s12936-017-1717-z

Avramov, M., A. Thaivalappil, A. Ludwig, L. Miner, C.I. Cullingham, L. Waddell, D.R. Lapen. 2024. Relationships between water quality and mosquito presence and abundance: a systematic review and meta-analysis. Journal of Medical Entomology. 12;61(1):1-33. https://doi.org/10.1093/jme/tjad139 DOI: https://doi.org/10.1093/jme/tjad139

Baak-Baak, C.M., A. D. Rodríguez-Ramírez, J.E. García-Rejón, S. Ríos-Delgado, J.L. Torres-Estrada. 2013. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti. Journal of Vector Ecology. 38(1):175-81. https://doi.org/10.1111/j.1948-7134.2013.12024.x DOI: https://doi.org/10.1111/j.1948-7134.2013.12024.x

Barbosa, R.M., L.N. Regis. 2011. Monitoring temporal fluctuations of Culex quinquefasciatus using oviposition traps containing attractant and larvicide in an urban environment in Recife, Brazil. Memórias do Instituto Oswaldo Cruz. 106(4):451-5. https://doi.org/10.1590/s0074-02762011000400011 DOI: https://doi.org/10.1590/S0074-02762011000400011

Barbosa, R.M., A. Souto, A.E. Eiras, L. Regis. 2007. Laboratory and field evaluation of an oviposition trap for Culex quinquefasciatus (Diptera: Culicidae). Memórias do Instituto Oswaldo Cruz. 102(4):523-9. https://doi.org/10.1590/s0074-02762007005000058 DOI: https://doi.org/10.1590/S0074-02762007005000058

Barbosa, R.M., L. Regis, R. Vasconcelos, W.S. Leal. 2010. Culex mosquitoes (Diptera: Culicidae) egg laying in traps loaded with Bacillus thuringiensis variety israelensis and baited with skatole. Journal of Medical Entomology. 47(3):345-8. https://doi.org/10.1093/jmedent/47.3.345 DOI: https://doi.org/10.1093/jmedent/47.3.345

Barrera, R., A. Harris, R.R. Hemme, G. Felix, N. Nazario, J.L. Muñoz-Jordan, D. Rodriguez, J. Miranda, E. Soto, S. Martinez, K. Ryff, C. Perez, V. Acevedo, M. Amador, S.H. Waterman. 2019. Citywide control of Aedes aegypti (Diptera: Culicidae) during the 2016 Zika epidemic by integrating community awareness, education, source reduction, larvicides, and mass mosquito trapping. Journal of Medical Entomology. 56(4):1033-1046. http://dx.doi.org/10.1093/jme/tjz009 DOI: https://doi.org/10.1093/jme/tjz009

Beehler, J.W., J.G. Millar, M.S. Mulla. 1994. Protein hydrolysates and associated bacterial contaminants as oviposition attractants for the mosquito Culex quinquefasciatus. Medical and Veterinary Entomology. 8(4):381-385. https://doi.org/10.1111/j.1365-2915.1994.tb00103.x DOI: https://doi.org/10.1111/j.1365-2915.1994.tb00103.x

Benelli, G., S. Bedini, F. Cosci, C. Toniolo, B. Conti, M. Nicoletti. 2015. Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitology Research. 114(1): 227–236. http://dx.doi.org/10.1007/s00436-014-4183-3 DOI: https://doi.org/10.1007/s00436-014-4183-3

Bentley, M.D., J.F. Day. 1989. Chemical ecology and behavioral aspects of mosquito oviposition. Annual Review of Entomology. 34: 401-421. https://doi.org/10.1146/annurev.en.34.010189.002153 DOI: https://doi.org/10.1146/annurev.ento.34.1.401

Benzon, G. L., C.S. Apperson. 1988. Reexamination of chemically mediated oviposition behavior in Aedes aegypti (L.) (Diptera: Culicidae). Journal of Medical Entomology. 25 (3): 158-164. https://doi.org/10.1093/jmedent/25.3.158 DOI: https://doi.org/10.1093/jmedent/25.3.158

Bernáth, B., G. Horváth, J. Gál, G. Fekete, V.B. Meyer-Rochow. 2008. Polarized light and oviposition site selection in the yellow fever mosquito: no evidence for positive polarotaxis in Aedes aegypti. Vision Research. 48(13):1449-1455. https://doi.org/10.1016/j.visres.2008.04.007 DOI: https://doi.org/10.1016/j.visres.2008.04.007

Blackwell, A., A.J. Mordue, B.S. Hansson, L.J. Wadhams, and J.A. Pickett. 1993. A behavioral and electrophysiological study of oviposition cues for Culex quinquefasciatus. Physiological Entomology. 18 (4): 343-348. https://doi.org/10.1111/j.1365-3032.1993.tb00607.x DOI: https://doi.org/10.1111/j.1365-3032.1993.tb00607.x

Blaustein, L., B.P. Kotler. 1993. Oviposition habitat selection by the mosquito, Culiseta longiareolata: effects of conspecifics, food and green toad tadpoles. Ecological Entomology. 18(2):104 – 108. https://doi.org/10.1111/j.1365-2311.1993.tb01190.x DOI: https://doi.org/10.1111/j.1365-2311.1993.tb01190.x

Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel, J.E. Cohen. 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia. 138(2):300-5. https://doi.org/10.1007/s00442-003-1398-x DOI: https://doi.org/10.1007/s00442-003-1398-x

Bond, J.G., J.I. Arredondo-Jimenez, M.H. Rodriguez, H. Quiroz-Martinez, and T. Williams. 2005. Oviposition habitat selection for a predator refuge and food source in a mosquito. Ecological Entomology. 30(3):255 – 263. https://doi.org/10.1111/j.0307-6946.2005.00704.x DOI: https://doi.org/10.1111/j.0307-6946.2005.00704.x

Bourtzis, K., S.L. Dobson, Z. Xi, J.L. Rasgon, M. Calvitti, L.A. Moreira, H.C. Bossin, R. Moretti, L.A. Baton, G.L. Hughes, P. Mavingui, J.R. Gilles. 2014. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Tropica. 132 Suppl: S150-63. https://doi.org/10.1016/j.actatropica.2013.11.004 DOI: https://doi.org/10.1016/j.actatropica.2013.11.004

Braks, M.A., W.S. Leal, R.T. Cardé. 2007. Oviposition responses of gravid female Culex quinquefasciatus to egg rafts and low doses of oviposition pheromone under semifield conditions. Journal of Chemical Ecology. 33(3):567-78. https://doi.org/10.1007/s10886-006-9223-8 DOI: https://doi.org/10.1007/s10886-006-9223-8

Brouazin, R., I. Claudel, R. Lancelot, G. Dupuy, L.C. Gouagna, M. Dupraz, T. Baldet, J. Bouyer. 2022. Optimization of oviposition trap settings to monitor populations of Aedes mosquitoes, vectors of arboviruses in La Reunion. Scientific Reports. 12(1):18450. https://doi.org/10.1038/s41598-022-23137-5 DOI: https://doi.org/10.1038/s41598-022-23137-5

Buckner, E.A., K.F. Williams, A.L. Marsicano, M.D. Latham, C.R. Lesser. 2017. Evaluating the vector control potential of the In2Care® mosquito trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee County, Florida. Journal of the American Mosquito Control Association. 33(3):193-199. https://doi.org/10.2987/17-6642R.1 DOI: https://doi.org/10.2987/17-6642R.1

Carvalho, D.O., A.R. McKemey, L. Garziera, R. Lacroix, C.A. Donnelly, L. Alphey, A. Malavasi, M.L. Capurro. 2015. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLOS Neglected Tropical Diseases. 9(7):e0003864. https://doi.org/10.1371/journal.pntd.0003864 DOI: https://doi.org/10.1371/journal.pntd.0003864

Cavalcanti, L.P.G., F.J. de Paula, R.J.S. Pontes, J. Heukelbach, J.W.D. Lima 2009. Survival of larvivorous fish used for biological control of Aedes aegypti larvae in domestic containers with different chlorine concentrations. Journal of Medical Entomology. 46 (4): 841–844. https://doi.org/10.1603/033.046.0414 DOI: https://doi.org/10.1603/033.046.0414

Chadee, D.D., A. Lakhan, W.R. Ramdath, R.C. Persad. 1993. Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad, West Indies. Journal of American Mosquito Control Association. 9(3):346-8.

Chaves, L.F., U.D. Kitron. 2011. Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales. Bulletin of Entomological Research. 101(6):633-41. https://doi.org/10.1017/S0007485310000519 DOI: https://doi.org/10.1017/S0007485310000519

Choo, Y.M., G.K. Buss, K. Tan, W.S. Leal. 2015. Multitasking roles of mosquito labrum in oviposition and blood feeding. Frontiers in Physiology. 6:306. https://doi.org/10.3389/fphys.2015.00306 DOI: https://doi.org/10.3389/fphys.2015.00306

Chumsri, A., P. Pongmanawut, F.W. Tina, M. Jaroensutasinee, K. Jaroensutasinee. 2018. Container types and water qualities affecting on number of Aedes larvae in Trang province, Thailand. Walailak Procedia. 2018(2):st43

Christophers, S. R. 1960. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, London, 752 pp.

Clements, A.N. 1992. The Biology of Mosquitoes. Volume 1: Development, Nutrition and Reproduction. Chapman & Hall, London, 509 pp. DOI: https://doi.org/10.1079/9780851993744.0000

Colton, Y.M., D.D. Chadee, D.W. Severson. 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Medical and Veterinary Entomology. 17(2):195-204. https://doi.org/10.1046/j.1365-2915.2003.00424.x DOI: https://doi.org/10.1046/j.1365-2915.2003.00424.x

Cuthbert, R.N., R. Al-Jaibachi, T. Dalu, J.T.A. Dick, and A. Callaghan. 2019. The influence of microplastics on trophic interaction strengths and oviposition preferences of dipterans. Science of the Total Environment. 651(Pt 2):2420–2423. https://doi.org/10.1016/j.scitotenv.2018.10.108 DOI: https://doi.org/10.1016/j.scitotenv.2018.10.108

Darriet, F., B. Zumbo, V. Corbel, F. Chandre. 2010. Influence of plant matter and NPK fertilizer on the biology of Aedes aegypti (Diptera: Culicidae). Parasite. 17(2):149-54. https://doi.org/10.1051/parasite/2010172149 DOI: https://doi.org/10.1051/parasite/2010172149

Darriet, F., V. Corbel. 2008. Aedes aegypti oviposition in response to NPK fertilizers. Parasite. 15(1):89-92. https://doi.org/10.1051/parasite/2008151089 DOI: https://doi.org/10.1051/parasite/2008151089

Day, J.F. 2016. Mosquito oviposition behavior and vector control. Insects. 7(4):65. https://doi.org/10.3390/insects7040065 DOI: https://doi.org/10.3390/insects7040065

Delatte, H., C. Paupy, J.S. Dehecq, J. Thiria, A.B. Failloux, D. Fontenille. 2008. Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control. Parasite. 15(1):3-13. https://doi.org/10.1051/parasite/2008151003 DOI: https://doi.org/10.1051/parasite/2008151003

Dhileepan, K. 1997. Physical factors and chemical cues in the oviposition behavior of arboviral vectors Culex annulirostris and Culex molestus (Diptera: Culicidae). Environmental Entomology. 26 (2):318-326. https://doi.org/10.1093/ee/26.2.318 DOI: https://doi.org/10.1093/ee/26.2.318

Dicke, M., M.W. Sabelis. 1988. Infochemical terminology: should it be based on cost-benefit analysis rather than origin of compounds? Functional Ecology. 2:131–139. https://doi.org/10.2307/2389687 DOI: https://doi.org/10.2307/2389687

Dilly, J., O. Santos da Silva, H.L. Pilz-Júnior, A.B. De Lemos, W.J. da Silva, T. De Freitas Milagres, L. Roldo, L.H. Alves Cândido. 2023. Novel devices and biomaterials for testing oviposition preference in Aedes aegypti. Industrial Crops and Products. 193:116206. https://doi.org/10.1016/j.indcrop.2022.116206 DOI: https://doi.org/10.1016/j.indcrop.2022.116206

Diniz, D.F.A., C.M.R. de Albuquerque, L.O. Oliva, M.A.V. de Melo-Santos, and C.F.J. Ayres. 2017. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites & Vectors 10:310. https://doi.org/10.1186/s13071-017-2235-0 DOI: https://doi.org/10.1186/s13071-017-2235-0

Duguma, D., and W.E. Walton. 2014. Effects of nutrients on mosquitoes and an emergent macrophyte, Schoenoplectus maritimus, for use in treatment wetlands. Journal of Vector Ecology. 39:1–13. DOI: https://doi.org/10.1111/j.1948-7134.2014.12063.x

Dusfour, I., J. Vontas, J.-P. David, D. Weetman, D.M. Fonseca, V. Corbel, K. Raghavendra, M.B. Coulibaly, A.J. Martins, S. Kasai, and F. Chandre. 2019. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Neglected Tropical Diseases. 13(10): e0007615.

https://doi.org/10.1371/journal.pntd.0007615. DOI: https://doi.org/10.1371/journal.pntd.0007615

Edwards, C.C., G. McConnel, D. Ramos, Y. Gurrola-Mares, K.D. Arole, M.J. Green, J.E. Cañas-Carrell, and C.L. Brelsfoard. 2023. Microplastic ingestion perturbs the microbiome of Aedes albopictus (Diptera: Culicidae) and Aedes aegypti. Journal of Medical Entomology. 60(5):884–898. https://doi.org/10.1093/jme/tjad097. DOI: https://doi.org/10.1093/jme/tjad097

El-Gendy, N.A., E.A. Shaalan. 2012. Oviposition deterrent activity of some volatile oils against the filaria mosquito vector Culex pipiens. Journal of Entomology. 9(6):435–441. https://doi.org/10.3923/je.2012.435.441 DOI: https://doi.org/10.3923/je.2012.435.441

Eneh, L.K., H. Saijo, A.K. Borg-Karlson, J.M. Lindh, G.K. Rajarao. 2016. Cedrol, a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus. Malaria Journal. 15:478. https://doi.org/10.1186/s12936-016-1536-7 DOI: https://doi.org/10.1186/s12936-016-1536-7

Ganesan, K., M.J. Mendki, M.V.S. Suryanarayana, S. Prakash, R.C. Malhotra. 2006. Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Australian Journal of Entomology. 45(1):75-80. https://doi.org/10.1111/j.1440-6055.2006.00513.x DOI: https://doi.org/10.1111/j.1440-6055.2006.00513.x

Geetha, I., K. P Paily, V. Padmanaban, K. Balaraman. 2003. Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Memórias do Instituto Oswaldo Cruz. 98(2):223-226. https://doi.org/10.1590/s0074-02762003000200010 DOI: https://doi.org/10.1590/S0074-02762003000200010

Girard, M., E. Martin, L. Vallon, V. Raquin, C. Bellet, Y. Rozier, E. Desouhant, A.E. Hay, P. Luis, C. Valiente Moro, G. Minard. 2021. Microorganisms associated with mosquito oviposition sites: implications for habitat selection and insect life histories. Microorganisms. 9(8):1589. https://doi.org/10.3390/microorganisms9081589 DOI: https://doi.org/10.3390/microorganisms9081589

Haddow, A.J. 1942. The mosquitoes of Bwamba County, Uganda. I. Bulletin of Entomological Research. 33(1):91-142. DOI: https://doi.org/10.1017/S0007485300026389

Hoel, D.F., P.J. Obenauer, M. Clark, R. Smith, T.H. Hughes, R.T. Larson, J.W. Diclaro, and S.A. Allan. 2011. Efficacy of ovitrap colors and patterns for attracting Aedes albopictus at suburban field sites in north-central Florida. Journal of the American Mosquito Control Association. 27 (3):245-251. https://doi.org/10.2987/11-6121.1 DOI: https://doi.org/10.2987/11-6121.1

Huang, J., E.D. Walker, P.E. Otienoburu, F. Amimo, J. Vulule, and J.R. Miller. 2006. Laboratory tests of oviposition by the African malaria mosquito, Anopheles gambiae, on dark soil as influenced by presence or absence of vegetation. Malaria Journal. 5:88. https://doi.org/10.1186/1475-2875-5-88 DOI: https://doi.org/10.1186/1475-2875-5-88

Hwang, YS., M.S. Mulla, J.D. Chaney, G.G. Lin, H.J. Xu. 1987. Attractancy and species specificity of 6-acetoxy-5-hexadecanolide, a mosquito oviposition attractant pheromone. Journal of Chemical Ecology. 3(2):245-52. https://doi.org/10.1007/BF01025885 DOI: https://doi.org/10.1007/BF01025885

Ikeshoji, T., I. Ichimoto, J. Konishi, Y. Naoshima, H. Ueda. 1979. 7, 11-Dimethyloctadecane: an ovipositional attractant for Aedes aegypti produced by Pseudomonas aeruginosa on capric acid substrate. Journal of Pesticide Science. 4:187-194. https://doi.org/10.1584/jpestics.4.187 DOI: https://doi.org/10.1584/jpestics.4.187

Jones, C.M., G.L. Hughes, S. Coleman, R. Fellows, and R.S. Quilliam. 2024. A perspective on the impacts of microplastics on mosquito biology and their vectorial capacity. Medical and Veterinary Entomology. 38(2):138–147. https://doi.org/10.1111/mve.12710. DOI: https://doi.org/10.1111/mve.12710

Juliano, S.A., L.P. Lounibos. 2005. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecology Letters. 8(5):558-574. https://doi.org/10.1111/j.1461-0248.2005.00755.x DOI: https://doi.org/10.1111/j.1461-0248.2005.00755.x

Khan, Z., B. Bohman, R. Ignell, S.R. Hill. 2023. Odour-mediated oviposition site selection in Aedes aegypti depends on aquatic stage and density. Parasites & Vectors. 16, 264. https://doi.org/10.1186/s13071-023-05867-1 DOI: https://doi.org/10.1186/s13071-023-05867-1

Kiflawi, M., L. Blaustein, M. Mangel. 2003. Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecifics larval density. Ecological Entomology. 28:168–173. https://doi.org/10.1046/j.1365-2311.2003.00505.x DOI: https://doi.org/10.1046/j.1365-2311.2003.00505.x

Koenraadt, C.J.M., K.P. Paaijmans, A.K. Githeko, B.G.J. Knols, W. Takken. 2003. Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats. Malaria Journal. 2, 20. https://doi.org/10.1186/1475-2875-2-20 DOI: https://doi.org/10.1186/1475-2875-2-20

Kolimenakis, A., S. Heinz, M.L. Wilson, V. Winkler, L. Yakob, A. Michaelakis, D. Papachristos, C. Richardson, O. Horstick. 2021. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit-A systematic review. PLoS Neglected Tropical Diseases. 15(9):e0009631. https://doi.org/10.1371/journal.pntd.000963 DOI: https://doi.org/10.1371/journal.pntd.0009631

Kroth, N., G.D. Cozzer, S.L. da Silva, R. de Souza Rezende, J. Dal Magro, D. Albeny-Simões. 2025. Female oviposition preferences and larval behavior of the Aedes aegypti mosquito (Linnaeus, 1762) exposed to predator cues (Odonata: Libellulidae). Limnetica, 44(1):000-000. https://doi.org/10.23818/limn.44.06 DOI: https://doi.org/10.23818/limn.44.06

Laurence, B.R., J.A. Pickett. 1982. Erythro-6-acetoxy-5-hexadecanolide, the major component of a mosquito oviposition attractant pheromone. Journal of the Chemical Society, Chemical Communications. 60. DOI: https://doi.org/10.1039/c39820000059

Laurence, B.R., J.A. Pickett. 1985. An oviposition attractant pheromone in Culex quinquefsciatus Say (Diptera: Culicidae). Bulletin of Entomological Research. 75(2):283-290. https://doi.org/10.1017/S0007485300014371 DOI: https://doi.org/10.1017/S0007485300014371

Lindh, J.M., A. Kannaste, B.G.J. Knols, I. Faye, A.K. Borg-Karlson. 2008. Oviposition responses of Anopheles gambiae s.s. (Diptera: Culicidae) and identification of volatiles from bacteria-containing solutions. Journal of Medical Entomology. 45 (6):1039-1049. https://doi.org/10.1093/jmedent/45.6.1039 DOI: https://doi.org/10.1093/jmedent/45.6.1039

Martianasari, R., P.H. Hamid. 2019. Larvicidal, adulticidal, and oviposition-deterrent activity of Pipier betle L. essential oil to Aedes aegypti. Veterinary World. 12(3):367-371. DOI: https://doi.org/10.14202/vetworld.2019.367-371

Mboera, L.E.G., G.J.C. Magogo, and K.Y. Mdira. 2003. Control of the filariasis mosquito Culex quinquefasciatus in breeding sites treated with neem (Azadiracta indica) in north-east Tanzania. Tanzania Health Research Bulletin. 5: 68-70.

Mboera, L.E.G., K.Y. Mdira, F.M. Salum, W. Takken, and J.A. Pickett. 1999. Influence of synthetic oviposition pheromone and volatiles from soakage pits and grass infusions upon oviposition site-selection of Culex mosquitoes in Tanzania. Journal of Chemical Ecology. 25:1855-1865. https://doi.org/10.1023/A:1020933800364 DOI: https://doi.org/10.1023/A:1020933800364

Mboera, L.E.G., W. Takken, K.Y. Mdira, G.J. Chuwa, and J.A. Pickett. 2000. Oviposition and behavioral responses of Culex quinquefasciatus to skatole and synthetic oviposition pheromone in Tanzania. Journal of Chemical Ecology. 26:1193-1203. https://doi.org/10.1023/A:1005432010721 DOI: https://doi.org/10.1023/A:1005432010721

McKinney, M.L. 2006. Urbanization as a major cause of biotic homogenization. Biological conservation. 127 (3):247-260. https://doi.org/10.1016/j.biocon.2005.09.005 DOI: https://doi.org/10.1016/j.biocon.2005.09.005

McMeniman, C.J., R.A. Corfas, B.J. Matthews, S.A. Ritchie, L.B. Vosshall. 2014. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell. 156(5):1060-1071. https://doi.org/10.1016/j.cell.2013.12.044 DOI: https://doi.org/10.1016/j.cell.2013.12.044

Melo, N., G.H. Wolff, A.L. Costa-da-Silva, R. Arribas, M.F. Triana, M. Gugger, J.A. Riffell, M. DeGennaro, and M.C. Stensmyr. 2020. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Current Biology. 30 (1):127-134. https://doi.org/10.1016/j.cub.2019.11.002 DOI: https://doi.org/10.1016/j.cub.2019.11.002

Mendki, M.J., K. Ganesan, S. Prakash, M.V.S. Suryanarayana, R.C. Malhotra, K. M. Rao, and R. Vaidyanathaswamy. 2000. Heneicosane: An oviposition-attractant pheromone of larval origin in Aedes aegypti mosquito. Current Science. 78 (11):1295-1296.

Metz, H.C., A.K. Miller, J. You, J. Akorli, F.W. Avila, E.A. Buckner, P. Kane, S. Otoo, A. Ponlawat, O. Triana-Chávez, K.F. Williams, C.S. McBride. 2022. Evolution of a mosquito’s hatching behavior to match its human-provided habitat. The American Naturalist. 201(2): 000–000. https://doi.org/10.1086/722481 DOI: https://doi.org/10.1086/722481

Millar, J.G., J.D. Chaney, M.S. Mulla. 1992. Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. Journal of the American Mosquito Control Association. 8(1):11-17.

Mokany, A., R. Shine. 2003. Competition between tadpoles and mosquito larvae. Oecologia 135: 615-620. https://doi.org/10.1007/s00442-003-1215-6 DOI: https://doi.org/10.1007/s00442-003-1215-6

Mosquito Taxonomic Inventory. 2024. Mosquito Taxonomic Inventory. Retrieved from https://mosquito-taxonomic-inventory.myspecies.info/ (consultado el 06/01/2025).

Munga, S., N. Minakawa, G. Zhou, O. O. J. Barrack, A.K. Githeko, G. Yan. 2006. Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu stricto. Journal of Medical Entomology. 43 (2):221-224. https://doi.org/10.1093/jmedent/43.2.221 DOI: https://doi.org/10.1093/jmedent/43.2.221

Mutero, C., P. Ng’ang’a, P. Wekoyela, J. Githure, and F. Konradsen. 2004. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields. Acta Tropica. 89:187–192. DOI: https://doi.org/10.1016/j.actatropica.2003.08.006

Muturi, E.J., B.G. Jacob, J. Shililu, and R. Novak. 2007. Laboratory studies on the effect of inorganic fertilizers on survival and development of immature Culex quinquefasciatus (Diptera: Culicidae). Journal of Vector Borne Diseases. 44:259–265. DOI: https://doi.org/10.1093/jmedent/44.3.503

Mwingira, V., L.E.G. Mboera, M. Dicke, W. Takken. 2020a. Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. Journal of Vector Ecology. 45(2):155-179. https://doi.org/10.1111/jvec.12387 DOI: https://doi.org/10.1111/jvec.12387

Mwingira, V.S., J. Spitzen, L.E.G. Mboera, J.L. Torres-Estrada, W. Takken. 2020b. The influence of larval stage and density on oviposition site-selection behavior of the afrotropical malaria mosquito Anopheles coluzzii (Diptera: Culicidae). Journal of Medical Entomology. 57(3):657-666. https://doi.org/10.1093/jme/tjz172 DOI: https://doi.org/10.1093/jme/tjz172

Nordlund, D.A., W.J. Lewis. 1976. Terminology of chemical releasing stimuli intraspecific and interspecific interactions. Journal of Chemical Ecology. 2:211-220. https://doi.org/10.1007/BF00987744 DOI: https://doi.org/10.1007/BF00987744

Obenauer, P.J., S.A. Allan, P.E. Kaufman. 2010. Aedes albopictus (Diptera: Culicidae) oviposition response to organic infusions from common flora of suburban Florida. Journal of Vector Ecology. 35(2):301-306. https://doi.org/10.1111/j.1948-7134.2010.00086.x DOI: https://doi.org/10.1111/j.1948-7134.2010.00086.x

Ohba, S-Y., M. Ohtsuka, T. Sunahara, Y. Sonoda, E. Kawashima, M. Takagi. 2012. Differential responses to predator cues between two mosquito species breeding in different habitats. Ecological Entomology. 37 (5):410-418. https://doi.org/10.1111/j.1365-2311.2012.01379.x DOI: https://doi.org/10.1111/j.1365-2311.2012.01379.x

Pamplona, L.G.C., C.H. Alencar, J.W.O. Lima, J. Heukelbach. 2009. Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish. Tropical Medicine & International Health. 14 (11):1347-1350. https://doi.org/10.1111/j.1365-3156.2009.02377.x DOI: https://doi.org/10.1111/j.1365-3156.2009.02377.x

Perich, M.J., A. Kardec, I.A. Braga, I.F. Portal, R. Burge, B.C. Zeichner, W.A. Brogdon, R.A. Wirtz. 2003. Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Medical and Veterinary Entomology. 17(2):205-210. https://doi.org/10.1046/j.1365-2915.2003.00427.x DOI: https://doi.org/10.1046/j.1365-2915.2003.00427.x

Pickett, J.A., C.M. Woodcocck. 1996. The role of mosquito olfaction in oviposition site location and in the avoidance of unsuitable hosts. Novartis Foundation Symposium. 200:109-123. https://doi.org/10.1002/9780470514948.ch9 DOI: https://doi.org/10.1002/9780470514948.ch9

Ponnusamy, L., D.M. Wesson, C. Arellano, C. Schal, and C.S. Apperson. 2010a. Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microbiology of Aquatic Systems. 59 (1):158-173. https://doi.org/10.1007/s00248-009-9565-1 DOI: https://doi.org/10.1007/s00248-009-9565-1

Ponnusamy, L., N. Xu, K. Böröczky, D.M. Wesson, L.A. Ayyash, C. Schal, C.S. Apperson. 2010b. Oviposition responses of the mosquitoes Aedes aegypti and Aedes albopictus to experimental plant infusions in laboratory bioassays. Journal of Chemical Ecology. 36(7):709–719. https://doi.org/10.1007/s10886-010-9806-2 DOI: https://doi.org/10.1007/s10886-010-9806-2

Ponnusamy, L., N. Xu, S. Nojima, D.M. Wesson, C. Schal, C.S. Apperson. 2008. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. The Proceedings of the National Academy of Sciences. 105 (27):9262-9267. https://doi.org/10.1073/pnas.0802505105 DOI: https://doi.org/10.1073/pnas.0802505105

Powell, J.R., W.J. Tabachnick. 2013. History of domestication and spread of Aedes aegypti--a review. Memórias do Instituto Oswaldo Cruz. 108 Suppl 1(Suppl 1):11-17. https://doi.org/10.1590/0074-0276130395 DOI: https://doi.org/10.1590/0074-0276130395

Prajapati, V., A.K. Tripathi, K.K. Aggarwal, S.P.S. Khanuja. 2005. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresource Technology. 96(16):1749–1757. https://doi.org/10.1016/j.biortech.2005.01.007 DOI: https://doi.org/10.1016/j.biortech.2005.01.007

Prasad, A., S. Sreedharan, B. Bakthavachalu, S. Laxman. 2023. Eggs of the mosquito Aedes aegypti survive desiccation by rewiring their polyamine and lipid metabolism. PLoS Biology. 21(10): e3002342. https://doi.org/10.1371/journal.pbio.3002342 DOI: https://doi.org/10.1371/journal.pbio.3002342

Raji, J.I., N. Melo, J.S. Castillo, S. Gonzalez, V. Saldana, M.C. Stensmyr, M. DeGennaro. 2019. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Current Biology. 29(8):1253-1262. https://doi.org/10.1016/j.cub.2019.02.045 DOI: https://doi.org/10.1016/j.cub.2019.02.045

Rajkumar, S., A. Jebanesan. 2008. Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitology Research. 104 (1):19-25. https://doi.org/10.1007/s00436-008-1145-7 DOI: https://doi.org/10.1007/s00436-008-1145-7

Reeves, W.K. 2004. Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes. Journal of Vector Ecology. 29:159-163.

Reiter, P., M.A. Amador, N. Colon N. 1991. Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. Journal of the American Mosquito Control Association. 7(1):52-5.

Reiter, P. 1996. Global warming and mosquito-borne disease in USA. Lancet. 348(9027):622. https://doi.org/10.1016/S0140-6736(05)64844-1 DOI: https://doi.org/10.1016/S0140-6736(05)64844-1

Rejmánková, E., R. Higashi, J. Grieco, N. Achee, D. Roberts. 2005. Volatile substances from larval habitats mediate species-specific oviposition in Anopheles mosquitoes. Journal of Medical Entomology. 42(2):95-103. https://doi.org/10.1093/jmedent/42.2.95 DOI: https://doi.org/10.1093/jmedent/42.2.95

Rey, J.R., S.M. O'Connell. 2014. Oviposition by Aedes aegypti and Aedes albopictus: influence of congeners and of oviposition site characteristics. Journal of Vector Ecology. 39(1):190-196. https://doi.org/10.1111/j.1948-7134.2014.12086.x DOI: https://doi.org/10.1111/j.1948-7134.2014.12086.x

Rochlin, I., A. Faraji, D.V. Ninivaggi, C.M. Barker, A.M. Kilpatrick. 2016. Anthropogenic impacts on mosquito populations in North America over the past century. Nature Communications. 7: 13604. https://doi.org/10.1038/ncomms13604 DOI: https://doi.org/10.1038/ncomms13604

Romeo-Aznar, V., L.P. Freitas, O. Gonçalves Cruz, A.A. King, M. Pascual. 2022. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nature Communications. 13:1996. https://doi.org/10.1038/s41467-022-28231-w DOI: https://doi.org/10.1038/s41467-022-28231-w

Rose, N.H., M. Sylla, A. Badolo, J. Lutomiah, D. Ayala, O.B. Aribodor, N. Ibe, J. Akorli, S. Otoo, J.P. Mutebi, A.L. Kriete, E.G. Ewing, R. Sang, A. Gloria-Soria, J.R. Powell, R.E. Baker, B.J. White, J.E. Crawford, C.S. McBride. 2020. Climate and urbanization drive mosquito preference for humans. Current Biology. 30 (18):3570-3579.e6. https://doi.org/10.1016/j.cub.2020.06.092 DOI: https://doi.org/10.1016/j.cub.2020.06.092

Ruel, D.M., Bohbot, J.D. 2022. The molecular and neural determinants of olfactory behaviour in mosquitoes. En Ignell, R., C.R. Lazzari, M.G. Lorenzo, S.R. Hill (Eds.). Sensory ecology of disease vectors (pp. 71–115). Wageningen Academic Publishers, 911 pp. https://doi.org/10.3920/978-90-8686-932-9_3 DOI: https://doi.org/10.3920/978-90-8686-932-9_3

Santana, A.L., R.A. Roque, A.E. Eiras. 2006. Characteristics of grass infusions as oviposition attractants to Aedes (Stegomyia) (Diptera: Culicidae). Journal of Medical Entomology. 43 (2):214–220. https://doi.org/10.1093/jmedent/43.2.214 DOI: https://doi.org/10.1093/jmedent/43.2.214

Schoelitsz, B., V. Mwingira, L.E.G. Mboera, H. Beijleveld, C.J.M. Koenraadt, J. Spitzen, J.J.A. van Loon, W. Takke. 2020. Chemical mediation of oviposition by Anopheles mosquitoes: a push-pull system driven by volatiles associated with larval stages. Journal of Chemical Ecology. 46 (4):397-409. https://doi.org/10.1007/s10886-020-01175-5 DOI: https://doi.org/10.1007/s10886-020-01175-5

Sérandour, J., J. Willison, W. Thuiller, P. Ravanel, G. Lempérière. 2010. Environmental drivers for Coquillettidia mosquito habitat selection: a method to highlight key field factors. Hydrobiologia. 652:377-388. https://doi.org/10.1007/s10750-010-0372-y DOI: https://doi.org/10.1007/s10750-010-0372-y

Silberbush, A., L. Blaustein. 2011. Mosquito females quantify risk of predation to their progeny when selecting an oviposition site. Functional Ecology. 25: 1091-1095. https://doi.org/10.1111/j.1365-2435.2011.01873.x DOI: https://doi.org/10.1111/j.1365-2435.2011.01873.x

Sivagnaname, N., D.D. Amalraj, M. Kalyanasundaram, P.K. Das. 2001. Oviposition attractancy of an infusion from a wood inhabiting fungus for vector mosquitoes. Indian Journal of Medical Research. 114:18-24.

Sivakumar, R., A. Jebanesan, M. Govindrajan, P. Rajasekar. 2011. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.), (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine. 4 (9):706-710. https://doi.org/10.1016/S1995-7645(11)60178-8 DOI: https://doi.org/10.1016/S1995-7645(11)60178-8

Snetselaar, J., R. Andriessen, R.A. Suer, A.J. Osinga, B.G.J. Knols, M. Farenhorst. 2014. Development and evaluation of a novel contamination device that targets multiple life-stages of Aedes aegypti. Parasites & Vectors. 7:200. https://doi.org/10.1186/1756-3305-7-200 DOI: https://doi.org/10.1186/1756-3305-7-200

Spencer, M., L. Blaustein, J.E. Cohen. 2002. Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology. 83 (3):669-679. DOI: https://doi.org/10.1890/0012-9658(2002)083[0669:OHSBMC]2.0.CO;2

Stav, G., L. Blaustein, J. Margalith, 1999. Experimental evidence for predation risk sensitive oviposition by a mosquito, Culiseta longiareolata. Ecological Entomology. 24:202-207. https://doi.org/10.1046/j.1365-2311.1999.00183.x DOI: https://doi.org/10.1046/j.1365-2311.1999.00183.x

Sumba, L.A., C.B. Ogbunugafor, A.L. Deng, and A. Hassanali. 2008. Regulation of oviposition in Anopheles gambiae s.s.: role of inter- and intra-specific signals. Journal of Chemical Ecology. 34:1430-1436. https://doi.org/10.1007/s10886-008-9549-5 DOI: https://doi.org/10.1007/s10886-008-9549-5

Sumba, L.A., T.O. Guda, A.L. Deng, A. Hassanali, J.C. Beier, B.G.J. Knols. 2004. Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. International Journal of Tropical Insect Science. 24:260-265. https://doi.org/10.1079/IJT200433 DOI: https://doi.org/10.1079/IJT200433

Tchouassi, D.P., S.B. Agha, J. Villinger, R. Sang, B. Torto. 2022. The distinctive bionomics of Aedes aegypti populations in Africa. Current Opinion in Insect Science. 54:100986. https://doi.org/10.1016/j.cois.2022.100986 DOI: https://doi.org/10.1016/j.cois.2022.100986

Thavara, U., A. Tawatsin, J. Chompoosri. 2004. Evaluation of attractants and egg-laying substrate preference for oviposition by Aedes albopictus (Diptera: Culicidae). Journal of Vector Ecology. 29 (1):66–72.

Torres-Estrada, J.L., R.A. Meza-Alvarez, J. Cibrian-Tovar, M.H. Rodriguez-Lopez, J.I. Arredondo-Jimenez, L. Cruz-Lopez, and J.C. Rojas-Leon. 2005. Vegetation-derived cues for the selection of oviposition substrates by Anopheles albimanus under laboratory conditions. Journal of the American Mosquito Control Association. 21(4):344-349. https://doi.org/10.2987/8756-971X(2006)21[344:VCFTSO]2.0.CO;2 DOI: https://doi.org/10.2987/8756-971X(2006)21[344:VCFTSO]2.0.CO;2

Torres-Estrada, J.L., M.H. Rodriguez, L. Cruz-Lopez, J.I. Arredondo-Jimenez. 2001. Selective oviposition by Aedes aegypti (Diptera: Culicidae) in response to Mesocyclops longisetus (Copepoda: Cyclopoidea) under laboratory and field conditions. Journal of Medical Entomology. 38 (2):188-192. https://doi.org/10.1603/0022-2585-38.2.188 DOI: https://doi.org/10.1603/0022-2585-38.2.188

Torto, B., D.P. Tchouassi. 2024. Chemical ecology and management of dengue vectors. Annual Review of Entomology. 69:159-182. https://doi.org/10.1146/annurev-ento-020123-015755 DOI: https://doi.org/10.1146/annurev-ento-020123-015755

Trexler, J.D., C.S. Apperson, C. Schal. 1998. Laboratory and field evaluations of Oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera : Culicidae) to oak leaf infusions. Journal of Medical Entomology. 35 (6): 967-976. https://doi.org/10.1093/jmedent/35.6.967 DOI: https://doi.org/10.1093/jmedent/35.6.967

Trexler, J.D., C.S. Apperson, L. Zurek, C. Gemeno, C. Schal, M. Kaufman, E. Walker, D.W. Watson, and L. Wallace. 2003. Role of bacteria in mediating the oviposition responses of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology. 40 (6):841-848. https://doi.org/10.1603/0022-2585-40.6.841 DOI: https://doi.org/10.1603/0022-2585-40.6.841

Van Dam, A.R., W.E. Walton. 2008. The effect of predatory fish exudates on the ovipostional behavior of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis. Medical and Veterinary Entomology. 22 (4):399-404. https://doi.org/10.1111/j.1365-2915.2008.00764.x DOI: https://doi.org/10.1111/j.1365-2915.2008.00764.x

Warikoo, R., S. Kumar. 2014. Oviposition altering and ovicidal efficacy of root extracts of Argemone mexicana against dengue vector, Aedes aegypti (Diptera: Culicidae). Journal of Entomology and Zoology Studies. 2 (4):11-17.

Warikoo, R., S. Kumar. 2015. Investigation on the oviposition-deterrence and ovicidal potential of the leaf extracts of Argemone mexicana against an Indian strain of dengue vector, Aedes aegypti (Diptera: Culicidae). Applied Research Journal. 1(4):208–215.

Wilke, A.B.B., C. Chase, C. Vasquez, A. Carvajal, J. Medina, W.D. Petrie, J.C. Beier. 2019. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Scientific Reports. 9:15335. https://doi.org/10.1038/s41598-019-51787-5 DOI: https://doi.org/10.1038/s41598-019-51787-5

Williams, R.E. 1962. Effect of coloring oviposition media with regard to the mosquito Aedes triseriatus (Say). The Journal of Parasitology. 48:919-925. DOI: https://doi.org/10.2307/3275123

Wondwosen, B., M. Dawit, Y. Debebe, H. Tekie, S.R: Hill, R. Ignell. 2021. Development of a chimeric odour blend for attracting gravid malaria vectors. Malaria Journal. 20:262. https://doi.org/10.1186/s12936-021-03797-w DOI: https://doi.org/10.1186/s12936-021-03797-w

Wondwosen, B., S.R. Hill, G. Birgersson, E. Seyoum, H. Tekie, R. Ignell. 2017. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malaria Journal. 16:39. https://doi.org/10.1186/s12936-016-1656-0 DOI: https://doi.org/10.1186/s12936-016-1656-0

Wong, J., S.T. Stoddard, H. Astete, A.C. Morrison, T.W. Scott. 2011. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Neglected Tropical Diseases. 5(4):e1015. https://doi.org/10.1371/journal.pntd.0001015 DOI: https://doi.org/10.1371/journal.pntd.0001015

Wooding, M., Y. Naudé, E. Rohwer, M. Bouwer. 2020. Controlling mosquitoes with semiochemicals: a review. Parasites & Vectors. 13(1):80. https://doi.org/10.1186/s13071-020-3960-3 DOI: https://doi.org/10.1186/s13071-020-3960-3

WHO (World Health Organization). 2024. Vector-borne diseases. En: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (consultado el 06/01/2025).

Xia, S., H.K. Dweck, J. Lutomiah, R. Sang, C.S. McBride, N.H. Rose, D. Ayala, J.R. Powell. 2021. Larval sites of the mosquito Aedes aegypti formosus in forest and domestic habitats in Africa and the potential association with oviposition evolution. Ecology and Evolution. 11(22):16327-16343. https://doi.org/10.1002/ece3.8332 DOI: https://doi.org/10.1002/ece3.8332

Zahouli, J.B.Z., B.G. Koudou, P. Müller, D. Malone, Y. Tano, J. Utzinger. 2017. Effect of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Côte d'Ivoire. PLoS One. 12(12):e0189082. https://doi.org/10.1371/journal.pone.0189082 DOI: https://doi.org/10.1371/journal.pone.0189082

Zuharah, W.F., P.J. Lester. 2010. Can adults of the New Zealand mosquito Culex pervigilans (Bergorth) detect the presence of a key predator in larval habitats?. Journal of Vector Ecology. 35(1):100-5. DOI: https://doi.org/10.1111/j.1948-7134.2010.00065.x

Descargas

Publicado

2025-07-01

Cómo citar

Flores Suárez, A. E., Gutiérrez Rodríguez, S. M., Dávila Barboza, J. A., Rebollar Téllez, E. A., Rodríguez Sánchez, I. P., Cerda Apresa, D., & López Monroy, B. (2025). ¿Qué atrae a las hembras de los mosquitos a oviponer? Los secretos detrás de sus elecciones. Biología Y Sociedad, 8(16), 68–85. https://doi.org/10.29105/bys8.16-193