Cuando el Entorno Deja Huella
Teratogénesis y los Riesgos del Ambiente en el Desarrollo Embrionario
DOI:
https://doi.org/10.29105/bys9.17-232Keywords:
embryonic development, teratogenesis, environmental pollution, birth defects, occupational exposureAbstract
During human development, the embryo goes through critical stages in which any alteration, no matter how small, can leave a permanent mark. Teratogenesis is the process by which external agents interfere with embryonic development, causing structural or functional abnormalities in the fetus. The constant increase in population, industrialization and urbanization, and the lack of strict regulations have allowed air pollution to contribute significantly. Air, soil, and water pollution, as well as occupational exposure to hazardous substances, have been shown to have a significant impact on the development of birth defects. Understanding how our environment can affect the embryonic process is crucial, allowing us to identify potential risk factors to which we are exposed and reduce the potential development of birth defects.
Downloads
References
Bassil, K. L., Collier, S., Mirea, L., Yang, J., Seshia, M. M., Shah, P. S., Lee, S. K., & Canadian Neonatal Network (2013). Association between congenital anomalies and area-level deprivation among infants in neonatal intensive care units. American journal of perinatology, 30(3), 225–232. https://doi.org/10.1055/s-0032-1323584
Brender, J. D., Zhan, F. B., Suarez, L., Langlois, P., Gilani, Z., Delima, I., & Moody, K. (2006). Linking environmental hazards and birth defects data. International journal of occupational and environmental health, 12(2), 126–133. https://doi.org/10.1179/oeh.2006.12.2.126
- Conley, J., Richards, S. (2013). Environmental Teratogenesis. In: Férard, JF., Blaise, C. (eds) Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5704-2_43
Cooper-Roth, Tristan, "The Effects of Thalidomide on Embryonic Development". Embryo Project Encyclopedia ( 2010-09-12 ). ISSN: 1940-5030 https://hdl.handle.net/10776/2061
Choi, E. J., Kim, N., Kwak, H. S., Han, H. J., Chun, K. C., Kim, Y. A., Koh, J. W., Han, J. Y., Joo, S. H., Lee, J. S., & Koren, G. (2021). The rates of major malformations after gestational exposure to isotretinoin: a systematic review and meta-analysis. Obstetrics & gynecology science, 64(4), 364–373. https://doi.org/10.5468/ogs.20373
Dasharathy, S., Arjunan, S., Maliyur Basavaraju, A., Murugasen, V., Ramachandran, S., Keshav, R., & Murugan, R. (2022). Mutagenic, Carcinogenic, and Teratogenic Effect of Heavy Metals. Evidence-based complementary and alternative medicine : eCAM, 2022, 8011953. https://doi.org/10.1155/2022/8011953
- Gorini F, Tonacci A. Toxic metals in pregnancy and congenital heart defects. Insights and new perspectives for a technology-driven reduction in food sources. Explor Cardiol. 2023;1:114–40. https://doi.org/10.37349/ec.2023.00012
Helen Dolk, Martine Vrijheid, The impact of environmental pollution on congenital anomalies, British Medical Bulletin, Volume 68, Issue 1, December 2003, Pages 25–45, https://doi.org/10.1093/bmb/ldg024
Rudnai, T., Sándor, J., Kádár, M., Borsányi, M., Béres, J., Métneki, J., Maráczi, G., & Rudnai, P. (2014). Arsenic in drinking water and congenital heart anomalies in Hungary. International journal of hygiene and environmental health, 217(8), 813–818. https://doi.org/10.1016/j.ijheh.2014.05.002
Lin, S., Herdt-Losavio, M. L., Chapman, B. R., Munsie, J. P., Olshan, A. F., Druschel, C. M., & National Birth Defects Prevention Study (2013). Maternal occupation and the risk of major birth defects: a follow-up analysis from the National Birth Defects Prevention Study. International journal of hygiene and environmental health, 216(3), 317–323. https://doi.org/10.1016/j.ijheh.2012.05.006
Maisonet, M., Correa, A., Misra, D., & Jaakkola, J. J. (2004). A review of the literature on the effects of ambient air pollution on fetal growth. Environmental research, 95(1), 106–115. https://doi.org/10.1016/j.envres.2004.01.001
Mattson, S. N., Bernes, G. A., & Doyle, L. R. (2019). Fetal Alcohol Spectrum Disorders: A Review of the Neurobehavioral Deficits Associated With Prenatal Alcohol Exposure. Alcoholism, clinical and experimental research, 43(6), 1046–1062. https://doi.org/10.1111/acer.14040
Miyashita, C., Saijo, Y., Ito, Y., Ikeda-Araki, A., Itoh, S., Yamazaki, K., Kobayashi, S., Ait Bamai, Y., Masuda, H., Tamura, N., Itoh, M., Yamaguchi, T., Yamazaki, S., Kishi, R., & The Japan Environment And Children's Study Group (2021). Association between the Concentrations of Metallic Elements in Maternal Blood during Pregnancy and Prevalence of Abdominal Congenital Malformations: The Japan Environment and Children's Study. International journal of environmental research and public health, 18(19), 10103. https://doi.org/10.3390/ijerph181910103
Organización Mundial de la Salud (OMS), 2023. Congenital disorders. En: https://www.who.int/news-room/fact-sheets/detail/birth-defects (consultado el 19/03/2025)
Pan, Z., Gong, T., & Liang, P. (2024). Heavy Metal Exposure and Cardiovascular Disease. Circulation research, 134(9), 1160–1178. https://doi.org/10.1161/CIRCRESAHA.123.323617
Pielage, M., El Marroun, H., Odendaal, H.J. et al. Alcohol exposure before and during pregnancy is associated with reduced fetal growth: the Safe Passage Study. BMC Med 21, 318 (2023). https://doi.org/10.1186/s12916-023-03020-4
Proietti, E., Röösli, M., Frey, U., & Latzin, P. (2013). Air pollution during pregnancy and neonatal outcome: a review. Journal of aerosol medicine and pulmonary drug delivery, 26(1), 9–23. https://doi.org/10.1089/jamp.2011.0932
Ravindra, K., Chanana, N., & Mor, S. (2021). Exposure to air pollutants and risk of congenital anomalies: A systematic review and metaanalysis. The Science of the total environment, 765, 142772. https://doi.org/10.1016/j.scitotenv.2020.142772
Spinder, N., Prins, J. R., Bergman, J. E. H., Smidt, N., Kromhout, H., Boezen, H. M., & de Walle, H. E. K. (2019). Congenital anomalies in the offspring of occupationally exposed mothers: a systematic review and meta-analysis of studies using expert assessment for occupational exposures. Human reproduction (Oxford, England), 34(5), 903–919. https://doi.org/10.1093/humrep/dez033
Spinder, N. (2020). Maternal occupational exposure and congenital anomalies. [Thesis fully internal (DIV), University of Groningen]. University of Groningen. https://doi.org/10.33612/diss.136730422
Srám, R. J., Binková, B., Dejmek, J., & Bobak, M. (2005). Ambient air pollution and pregnancy outcomes: a review of the literature. Environmental health perspectives, 113(4), 375–382. https://doi.org/10.1289/ehp.6362
Sun, L., Wu, Q., Wang, H., Liu, J., Shao, Y., Xu, R., Gong, T., Peng, X., & Zhang, B. (2023). Maternal exposure to ambient air pollution and risk of congenital heart defects in Suzhou, China. Frontiers in public health, 10, 1017644. https://doi.org/10.3389/fpubh.2022.1017644
Vargesson N. (2015). Thalidomide-induced teratogenesis: history and mechanisms. Birth defects research. Part C, Embryo today : reviews, 105(2), 140–156. https://doi.org/10.1002/bdrc.21096
Vrijheid, M., Martinez, D., Manzanares, S., Dadvand, P., Schembari, A., Rankin, J., & Nieuwenhuijsen, M. (2011). Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environmental health perspectives, 119(5), 598–606. https://doi.org/10.1289/ehp.1002946
Wan, X., Wei, S., Wang, Y., Jiang, J., Lian, X., Zou, Z., & Li, J. (2023). The association between maternal air pollution exposure and the incidence of congenital heart diseases in children: A systematic review and meta-analysis. The Science of the total environment, 892, 164431. https://doi.org/10.1016/j.scitotenv.2023.164431
Weber, K. A., Yang, W., Carmichael, S. L., Collins, R. T., 2nd, Luben, T. J., Desrosiers, T. A., Insaf, T. Z., Le, M. T., Evans, S. P., Romitti, P. A., Yazdy, M. M., Nembhard, W. N., Shaw, G. M., & National Birth Defects Prevention Study (2023). Assessing associations between residential proximity to greenspace and birth defects in the National Birth Defects Prevention Study. Environmental research, 216(Pt 3), 114760. https://doi.org/10.1016/j.envres.2022.114760
Wróblewski, M., Miłek, J., Godlewski, A., & Wróblewska, J. (2025). The Impact of Arsenic, Cadmium, Lead, Mercury, and Thallium Exposure on the Cardiovascular System and Oxidative Mechanisms in Children. Current issues in molecular biology, 47(7), 483. https://doi.org/10.3390/cimb47070483
Yuan, X., Liang, F., Zhu, J., Huang, K., Dai, L., Li, X., Wang, Y., Li, Q., Lu, X., Huang, J., Liao, L., Liu, Y., Gu, D., Liu, H., & Liu, F. (2023). Maternal Exposure to PM2.5 and the Risk of Congenital Heart Defects in 1.4 Million Births: A Nationwide Surveillance-Based Study. Circulation, 147(7), 565–574. https://doi.org/10.1161/CIRCULATIONAHA.122.061245
Downloads
Published
How to Cite
License
Copyright (c) 2026 Javier Ascencio-Guerrero, Mario Murguía Perez, Martha Alicia Hernández-González, Eduardo Agustín-Godínez

This work is licensed under a Creative Commons Attribution 4.0 International License.
