Aislamiento de bacterias resistentes a antibióticos en aves de la Universidad Autónoma de Nuevo León campus Ciudad Universitaria
Keywords:
Anthropogenic impact, resistance, urban birds, antibioticsAbstract
In recent years, the ecological impact of wild birds in dissemination routes of resistance genes has taken great interest. There is evidence to suggest that wild birds can carry antibiotic-resistant bacteria and that transmission can occur from human waste products. The increase in human activity has increased pollution rates and the risk of disease transmission. Thus, the objective of this study was to determine antibiotic-resistant bacteria in birds captured at the Universidad Autónoma de Nuevo León: campus Ciudad Universitaria. Sampling was carried out during the period November 2017 - April 2018. Once the birds were captured, a cloacal swab was performed for the isolation of bacteria in selective media and their identification by MALDI-TOF. To evaluate resistance patterns, antibiograms were performed using the Kirby Bauer method. A total of 27 birds of 3 orders were captured: Passeriformes, Piciformes and Columbiformes, standing out the species of: Columba livia (Domestic Dove), Melanerpes aurifrons (Cheje Woodpecker), Catharus guttatus (Cinnamon-tailed Thrush) and Passer domesticus (Domestic Sparrow). Forty isolates were obtained, of which 75% corresponded to strains of the Enterobacteriaceae family and 27.5% to Gram-positive bacteria. The bacteria mostly found in the analyzed samples were Escherichia coli (n=17) and Enterobacter sp. (n=6) and the bacterial species with the highest resistance to antibiotics was E. coli. Only one Enterobacter sp. from P. domesticus showed resistance to 3 antibiotics. The species with the highest isolation of bacteria resistant to antibiotics was C. livia with 33% of all resistant bacteria, followed by C. guttatus with 30% and M. aurifrons with 28.57%. These results suggest that the birds tested are carriers of antibiotic-resistant bacteria that may participate in the flow and exchange of resistance genes between different species.
Downloads
References
Bailey Richard A. 2013. Salud Intestinal en Aves Domésticas- El Mundo Interno [Online]. En: http://eu.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_Te chDocs/AviagenBriefGutHealth2013-ES.pdf (Consultado el 15/05/2020)
Berrios, F. Z. K. 2005. Resistencia antimicrobiana de enterobacterias y uso antimicrobiano en pacientes de la Unidad de Cuidados Intensivos del Hospital Dos de Mayo. Universidad Nacional Mayor de San Marcos. Lima, Perú́, 6-9pp.
Braconaro P. 2012. Caracterización de microbiota bacteriana y fúngica presente en cloaca de passeriformes silvestres confiscados de tráfico que será sometido a programas de soltura. Facultad de Medicina Veterinaria y Zootecnia, Universidad de San Paulo. San Paulo, Brasil, 22-43pp.
Camarda, A., E. Circella, D. Pennelli, A. Madio. 2006. Wild birds as biological indicators of environmental pollution: biotyping and antimicrobial resistance patterns of Escherichia coli iso- lated from Audouin’s gulls (Larus Audouinii) living in the Bay of Gallipoli (Italy). Ital J Anim Sci. 5: 287–90.
Carattoli, A. 2008. Animal reservoirs for extended spectrum β‐lactamase producers. Clinical Microbiology and Infection. 14(1): 117-123.
Clinical and Laboratory Standards Institute (CLSI). 2017. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100 Wayne, PA: Clinical and Laboratory Standards Institute. USA.
Cole, D., D.J. Drum, D.E. Stalknecht, D.G. White, M.D. Lee, S. Ayers. 2005 Free-living Canada geese and antimicrobial resistance. Emerg Infect Dis.11: 935-948.
Grobbel, M., A. Lübke-Becker, E. Alesik, S. Schwarz, J. Wallmann, C. Werckenthin, L. H. Wieler. 2007. Antimicrobial susceptibility of Escherichia coli from swine, horses, dogs and cats as determined in the BfT-GermVet monitoring program 2004-2006. Berliner und Munchener tierarztliche Wochenschrift. 120(9-10): 391-401.
Guardabassi, L., S. Schwarz, D.H. Lloyd. 2004. Pet animals as reservoirs of antimicrobial-resistant bacteria. Journal of Antimicrobial Chemotherapy. 54(2): 321- 332.
Hasan, B., L. Sandegren, Å. Melhus, M. Drobni, J. Hernandez, J. Waldenström, M. Alam, B. Olsen. 2012. Antimicrobial Drug–Resistant Escherichia coli in Wild Birds and Free-range Poultry, Bangladesh. Emerging Infectious Diseases. 18(12).
Hirai, J., K. Uechi, M. Hagihara, D. Sakanashi, T. Kinjo, S. Haranaga, J. Fujita. 2016. Bacteremia due to Citrobacter braakii: a case report and literature review. Journal of infection and chemotherapy. 22(12): 819-821.
Hickman-Brenner, F. W., G. P. Huntley-Carter, Saitoh Yoshihiko, A. G. Steigerwalt, J. J. Farmer, J. Brenner. 1984. Moellerella wisconsensis, a new Genus and Species of Enterobacteriaceae Found in Human Stool Specimens. Journal of Clinical Microbiology. 34: 460-463.
Koneman, E. W. 2008. Diagnostico Microbiológico: texto y atlas a color. Editorial Médica Panamericana: Buenos Aires, Argentina. 269pp.
Medina-Vogel, G. 2010. Ecología de enfermedades infecciosas emergentes y conservación de especies silvestres. Archivos de medicina veterinaria. 42(1): 11-24.
Middleton, J.H., A. Ambrose. 2005. Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). Journal of Wildlife Diseases. 41: 334–41.
Moreno, M. K. M. 2013. Carbapenémicos: tipos y mecanismos de resistencia bacterianos. Revista médica de Costa Rica y Centroamérica. 70(608): 599-605.
Nakamura, M., H. Yoshimura, T. Koeda. 1982. Drug resistance and R plasmids of Escherichia coli strains isolated from six species of wild birds. Nippon Juigaku Zasshi. 44: 465–71.
Radhouani, H., P. Poeta, A. Goncalves, Pacheco, R. Sargo, G. Igrejas. 2012. Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). Journal of medical microbiology. 61(6): 837-843.
Radimersky, T., P. Frolkova, D. Janoszowska, M. Dolejska, P. Svec, E. Roubalova. 2010. Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons. Journal of Applied Microbiology. 109: 1687–95.
Sacristán Y. C. 2012. Estudio de las antibiorresistencias bacterianas presentes en aves sinantrópicas de la Comunidad de Madrid. Facultad de Veterinaria, Universidad Complutense de Madrid. Madrid, España. 16-26pp.
SEFH. 2008. Informe técnico de evaluación ertapenem. Hospital Universitario Virgen de la Arrisaca. [Online]. En: http://gruposdetrabajo.sefh.es/genesis/informes- genesis/INFO_EVAL_ERTAPENEM.pdf (consultado 23/03/2019).
Secretaria de Medio Ambiente y Recursos Naturales. 2010. Norma Oficial Mexicana. NOM-059- ECOL-2010. Protección Ambiental Especies Nativas de México de Flora y Fauna Silvestre Categorías de Riesgo y Especificaciones para Su Inclusión Exclusión o Cambio Lista de Especies en Riesgo. México: Diario Oficial de la Federación.
Tardón, A., E. Bataller, L. Llobat, E. Jiménez-Trigos. 2021. Bacteria and antibiotic resistance detection in fractures of wild birds from wildlife rehabilitation centres in Spain. Comparative Immunology, Microbiology and Infectious Diseases. 74: 101-575.
Vittecoq, M. S. Godreuil, F. Prugnolle, P. Durand, L. Brazier, N. Renaud, F. Renaud, 2016. Antimicrobial resistance in wildlife. Journal of Applied Ecology. 53(2): 519-529.
Wellington, E. M., A.B. Boxall, P. Cross, J. E. Feil, W.H. Gaze, P.M. Hawkey, P. C.M. Thomas. 2013. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet infectious diseases. 13(2):155-165